The metastatic process is complex and remains a major obstacle in the management of colorectal cancer. To gain a better insight into the pathology of metastasis, we investigated genomic aberrations in a large cohort of matched colorectal cancer primaries and distant metastases from various sites by high resolution array comparative genomic hybridization. In total, 62 primary colorectal cancers, and 68 matched metastases (22 liver, 11 lung, 12 ovary, 12 omentum, and 11 distant lymph nodes) were analyzed. Public datasets were used for validation purposes. Metastases resemble their matched primary tumors in the majority of the patients. This validates the significant overlap in chromosomal aberrations between primary tumors and corresponding metastases observed previously. We observed 15 statistically significant different regions between the primary tumors and their matched metastases, of which only one recurrent event in metastases was observed. We conclude, based on detailed analysis and large independent datasets, that chromosomal copy number aberrations in colorectal metastases resemble their primary counterparts, and differences are typically non-recurrent.
References
[1]
Klein CA (2009) Parallel progression of primary tumours and metastases. Nat Rev Cancer 9: 302–312. doi: 10.1038/nrc2627
[2]
Valastyan S, Weinberg RA (2011) Tumour metastasis: molecular insights and evolving paradigms. Cell 147: 275–92. doi: 10.1016/j.cell.2011.09.024
[3]
Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumourigenesis. Cell 61: 759–767. doi: 10.1016/0092-8674(90)90186-i
[4]
Cairns J (1975) Mutation selection and the natural history of cancer. Nature 255: 197–200. doi: 10.1038/255197a0
[5]
Bernards R, Weinberg RA (2002) A progression puzzle. Nature 418: 823. doi: 10.1038/418823a
[6]
Weinberg RA (2008) Mechanisms of malignant progression. Carcinogenesis 29: 1092–1095. doi: 10.1093/carcin/bgn104
[7]
Diep CB, Teixeira MR, Thorstensen L, Wiig,JN, Eknaes M, et al. (2004) Genome characteristics of primary carcinomas, local recurrences, carcinomatoses, and liver metastases from colorectal cancer patients. Mol Cancer 3: 6.
[8]
Habermann JK, Paulsen U, Roblick UJ, Upender MB, McShane LM, et al. (2007) Stage-specific alterations of the genome, transcriptome, and proteome during colorectal carcinogenesis. Genes Chromosomes Cancer 46: 10–26. doi: 10.1002/gcc.20382
[9]
Stange DE, Engel F, Longerich T, Koo BK, Koch M, et al. (2010) Expression of an ASCL2 related stem cell signature and IGF2 in colorectal cancer liver metastases with 11p15.5 gain. Gut 59: 1236–1244. doi: 10.1136/gut.2009.195701
[10]
Vakiani E, Janakiraman M, Shen R, Sinha R, Zeng Z, et al. (2012) Comparative genomic analysis of primary versus metastatic colorectal carcinomas. J Clin Oncol 30: 2956–2962. doi: 10.1200/jco.2011.38.2994
[11]
Brosens RP, Haan JC, Carvalho B, Rustenburg F, Grabsch H, et al. (2010) Candidate driver genes in focal chromosomal aberrations of stage II colon cancer. J Pathol 221: 411–424. doi: 10.1002/path.2724
[12]
Leary RJ, Lin JC, Cummins J, Boca S, Wood LD, et al. (2008) Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancer. Proc Natl Acad Sci U S A 105: 16224–16229. doi: 10.1073/pnas.0808041105
[13]
Parsons DW, Jones S, Zhang X, Lin JC, Leary RB, et al. (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321: 1807–1812. doi: 10.1126/science.1164382
[14]
Weir BA, Woo MS, Getz G, Perner S, Ding L, et al. (2007) Characterizing the cancer genome in lung adenocarcinoma. Nature 450: 893–898. doi: 10.1038/nature06358
[15]
Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, et al. (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463: 899–905. doi: 10.1038/nature08822
[16]
Scheinin I, Ferreira JA, Knuutila S, Meijer GA, van de Wiel MA, et al. (2010) CGHpower: exploring sample size calculations for chromosomal copy number experiments. BMC Bioinformatics 11: 331. doi: 10.1186/1471-2105-11-331
[17]
Koopman M, Antonini NF, Douma J, Wals J, Honkoop AH, et al. (2007) Sequential versus combination chemotherapy with capecitabine, irinotecan, and oxaliplatin in advanced colorectal cancer (CAIRO): a phase III randomised controlled trial. Lancet 370: 135–142. doi: 10.1016/s0140-6736(07)61086-1
[18]
Tol J, Koopman M, Cats A, Rodenburg CJ, Creemers GJ, et al. (2009) Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 360: 563–572. doi: 10.1056/nejmoa0808268
[19]
Sobin LH, Fleming ID (1997) TNM Classification of Malignant Tumours, fifth edition. Union Internationale Contre le Cancer and the American Joint Committee on Cancer. Cancer 1997 80: 1803–1804. doi: 10.1002/(sici)1097-0142(19971101)80:9<1803::aid-cncr16>3.0.co;2-9
[20]
Hamilton S, Aaltonen L (2000) WHO Classification of Tumours, Pathology & Genetics, Tumours of the Digestive System. Geneva: World health Organization.
[21]
Koopman M, Kortman GA, Mekenkamp L, Ligtenberg MJ, Hoogerbrugge N, et al. (2009) Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br J Cancer 100: 266–273.
[22]
Buffart TE, Israeli D, Tijssen M, Vosse SJ, Mrsic A, et al. (2008) Across array comparative genomic hybridisation: a strategy to reduce reference channel hybridisations. Genes Chromosomes Cancer 47: 994–1004. doi: 10.1002/gcc.20605
[23]
van de Wiel MA, Kim KI, Vosse SJ, van Wieringen WN, Wilting SM, et al. (2007) CGHcall: calling aberrations for array CGH tumour profiles. Bioinformatics 23: 892–894. doi: 10.1093/bioinformatics/btm030
[24]
Beroukhim R, Getz G, Nghiemphu L, Barretina J, Hsueh T, et al. (2007) Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci U S A 104: 20007–20012. doi: 10.1073/pnas.0710052104
[25]
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, et al. (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2: 401–404. doi: 10.1158/2159-8290.cd-12-0095
[26]
B?rger ME, Gosens MJ, Jeuken JW, van Kempen LC, van de Velde CJ, et al. (2007) Signet ring cell differentiation in mucinous colorectal carcinoma. J Pathol. 212: 278–86. doi: 10.1002/path.2181
[27]
Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487: 330–7.
[28]
Braun S, Pantel K, Muller P, et al. (2000) Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 342: 525–533. doi: 10.1056/nejm200002243420801
[29]
van ‘t Veer LJ, Dai H, van de Vijver M, He YD, Hart AA, et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536. doi: 10.1038/415530a
[30]
Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature of metastasis in primary solid tumours. Nat Genet 33: 49–54. doi: 10.1038/ng1060
[31]
Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, et al. (2000) Molecular portraits of human breast tumours. Nature 406: 747–752. doi: 10.1038/35021093
[32]
Jones S, Chen WD, Parmigiani G, Diehl F, Beerenwinkel N, et al. (2008) Comparative lesion sequencing provides insights into tumour evolution. Proc Natl Acad Sci U S A 105: 4283–4288. doi: 10.1073/pnas.0712345105
[33]
Kloosterman WP, Hoogstraat M, Paling O, Tavakoli-Yaraki M, Renkens I, et al. (2011) Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer. Genome Biol 12: R103. doi: 10.1186/gb-2011-12-10-r103
[34]
Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, et al. (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467: 1109–1113. doi: 10.1038/nature09460
[35]
Liu W, Laitinen S, Khan S, Vihinen M, Kowalski J, et al. (2009) Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat Med 15: 559–565. doi: 10.1038/nm.1944
[36]
Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, et al. (2012) Intratumour heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366: 883–892. doi: 10.1056/nejmoa1113205
[37]
Krijgsman O, Israeli D, van Essen HF, Eijk PP, Berens ML, et al. (2013) Detection limits of DNA copy number alterations in heterogeneous cell populations. Cell Oncol 36: 27–36. doi: 10.1007/s13402-012-0108-2
[38]
Vermaat JS, Nijman IJ, Koudijs MJ, Gerritse FL, Scherer SJ, et al. (2012) Primary colorectal cancers and their subsequent hepatic metastases are genetically different: implications for selection of patients for targeted treatment. Clin Cancer Res 18: 688–699. doi: 10.1158/1078-0432.ccr-11-1965