[1] | Grande L, Bemis WE (1991) Osteology and Phylogenetic Relationships of Fossil and Recent Paddlefishes (Polyodontidae) with Comments on the Interrelationships of Acipenseriformes. Journal of Vertebrate Paleontology 11: 1–121 doi:10.1080/02724634.1991.10011424.
|
[2] | Inoue JG, Miya M, Venkatesh B, Nishida M (2005) The mitochondrial genome of Indonesian coelacanth Latimeria menadoensis (Sarcopterygii: Coelacanthiformes) and divergence time estimation between the two coelacanths. Gene 349: 227–235 doi:10.1016/j.gene.2005.01.008.
|
[3] | Bolker JA (2004) Embryology. In: LeBreton G, Beamish F, McKinley RS, editors. Sturgeons and paddlefish of North America. Kluwer Academic Publishers. 134–146.
|
[4] | Elinson RP (2009) Nutritional endoderm: a way to breach the holoblastic-meroblastic barrier in tetrapods. J Exp Zool 312B: 526–532 doi:10.1002/jez.b.21218.
|
[5] | Ballard WW, Ginsburg AS (1980) Morphogenetic movements in acipenserid embryos. J Exp Zool 213: 69–103. doi: 10.1002/jez.1402130110
|
[6] | Bolker JA (1993) Gastrulation and mesoderm morphogenesis in the white sturgeon. J Exp Zool 266: 116–131 doi:10.1002/jez.1402660206.
|
[7] | Ginsburg AS, Dettlaff TA (1991) The russian sturgeon Acipenser guldensadti. Part1. Gametes and early development up to time of hatching. In: Dettlaff TA, Vassetzky SG, editors. Animal species for developmental studies, Volume2, Vertebrates. Springer. 16–65.
|
[8] | Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203: 253–310 doi:10.1002/aja.1002030302.
|
[9] | Cooper MS, Virta VC (2007) Evolution of gastrulation in the ray-finned (actinopterygian) fishes. J Exp Zool B Mol Dev Evol 308: 591–608 doi:10.1002/jez.b.21142.
|
[10] | Bolker JA (1993) The mechanism of gastrulation in the white sturgeon. J Exp Zool 266: 132–145 doi:10.1002/jez.1402660207.
|
[11] | Takeuchi M, Okabe M, Aizawa S (2009) The Genus Polypterus (Bichirs): A Fish Group Diverged at the Stem of Ray-Finned Fishes (Actinopterygii). Cold Spring Harbor Protocols 2009: pdb.emo117–pdb.emo117 doi:10.1101/pdb.emo117.
|
[12] | Takeuchi M, Takahashi M, Okabe M, Aizawa S (2009) Germ layer patterning in bichir and lamprey; an insight into its evolution in vertebrates. Developmental Biology 332: 90–102 doi:10.1016/j.ydbio.2009.05.543.
|
[13] | Long WL, Ballard WW (2001) Normal embryonic stages of the longnose gar, Lepisosteus osseus. BMC Dev Biol 1: 6.
|
[14] | Ballard WW (1986) Morphogenetic movements and a provisional fate map of development in the holostean fish Amia calva. J Exp Zool 238: 355–372 doi:10.1002/jez.1402380309.
|
[15] | Ballard WW (1986) Stages and rates of normal development in the holostean fish Amia calva. J Exp Zool 238: 337–354 doi:10.1002/jez.1402380308.
|
[16] | Whitington PM, Dixon KE (1975) Quantitative studies of germ plasm and germ cells during early embryogenesis of Xenopus laevis. J Embryol Exp Morphol 33: 57–74.
|
[17] | Houston DW, Zhang J, Maines JZ, Wasserman SA, King ML (1998) A Xenopus DAZ-like gene encodes an RNA component of germ plasm and is a functional homologue of Drosophila boule. Development 125: 171–180.
|
[18] | Knaut H, Pelegri F, Bohmann K, Schwarz H, Nüsslein-Volhard C (2000) Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification. The Journal of Cell Biology 149: 875–888. doi: 10.1083/jcb.149.4.875
|
[19] | Miyake A, Saito T, Kashiwagi T, Ando D, Yamamoto A, et al. (2006) Cloning and pattern of expression of the shiro-uo vasa gene during embryogenesis and its roles in PGC development. Int J Dev Biol 50: 619–625 doi:10.1387/ijdb.062172am.
|
[20] | Herpin A, Rohr S, Riedel D, Kluever N, Raz E, et al. (2007) Specification of primordial germ cells in medaka (Oryzias latipes). BMC Dev Biol 7: 3 doi:10.1186/1471-213X-7-3.
|
[21] | Kitauchi T, Saito T, Motomura T, Arai K, Yamaha E (2012) Distribution and function of germ plasm in cytoplasmic fragments from centrifuged eggs of the goldfish, Carassius auratus. Journal of Applied Ichthyology 28: 998–1005 doi:10.1111/jai.12068.
|
[22] | Ressom RE, Dixon KE (1988) Relocation and reorganization of germ plasm in Xenopus embryos after fertilization. Development 103: 507–518.
|
[23] | Savage RM, Danilchik MV (1993) Dynamics of Germ Plasm Localization and Its Inhibition by Ultraviolet Irradiation in Early Cleavage Xenopus Embryos. Developmental Biology 157: 371–382 doi:10.1006/dbio.1993.1142.
|
[24] | Taguchi A, Takii M, Motoishi M, Orii H, Mochii M, et al. (2012) Analysis of localization and reorganization of germ plasm in Xenopus transgenic line with fluorescence-labeled mitochondria. Dev Growth Differ 54: 767–776 doi:10.1111/dgd.12005.
|
[25] | Robb DL, Heasman J, Raats J, Wylie C (1996) A kinesin-like protein is required for germ plasm aggregation in Xenopus. Cell 87: 823–831. doi: 10.1016/s0092-8674(00)81990-x
|
[26] | Pelegri F, Knaut H, Maischein HM, Schulte-Merker S, Nüsslein-Volhard C (1999) A mutation in the zebrafish maternal-effect gene nebel affects furrow formation and vasa RNA localization. Curr Biol 9: 1431–1440. doi: 10.1016/s0960-9822(00)80112-8
|
[27] | Theusch E, Brown K, Pelegri F (2006) Separate pathways of RNA recruitment lead to the compartmentalization of the zebrafish germ plasm. Developmental Biology 292: 129–141 doi:10.1016/j.ydbio.2005.12.045.
|
[28] | Sutasurja LA, Nieuwkoop PD (1974) The induction of the primordial germ cells in the urodeles. Development Genes and Evolution 175: 199–220 doi:10.1007/BF00582092.
|
[29] | Takeuchi T, Tanigawa Y, Minamide R, Ikenishi K, Komiya T (2010) Analysis of SDF-1/CXCR4 signaling in primordial germ cell migration and survival or differentiation in Xenopus laevis. Mechanisms of Development 127: 146–158 doi:10.1016/j.mod.2009.09.005.
|
[30] | Heasman J, Hynes RO, Swan AP, Thomas V, Wylie CC (1981) Primordial germ cells of Xenopus embryos: the role of fibronectin in their adhesion during migration. Cell 27: 437–447. doi: 10.1016/0092-8674(81)90385-8
|
[31] | Yoon C, Kawakami K, Hopkins N (1997) Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124: 3157–3165.
|
[32] | Braat AK, Zandbergen T, van de Water S, Goos HJ, Zivkovic D (1999) Characterization of zebrafish primordial germ cells: Morphology and early distribution of vasa RNA. Dev Dyn 216: 153–167. doi: 10.1002/(sici)1097-0177(199910)216:2<153::aid-dvdy6>3.0.co;2-1
|
[33] | Weidinger G, Wolke U, K?prunner M, Klinger M, Raz E (1999) Identification of tissues and patterning events required for distinct steps in early migration of zebrafish primordial germ cells. Development 126: 5295–5307.
|
[34] | Doitsidou M, Reichman-Fried M, Stebler J, K?prunner M, Dorries J, et al. (2002) Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 111: 647–659. doi: 10.1016/s0092-8674(02)01135-2
|
[35] | Boldajipour B, Mahabaleshwar H, Kardash E, Reichman-Fried M, Blaser H, et al. (2008) Control of Chemokine-Guided Cell Migration by Ligand Sequestration. Cell 132: 463–473 doi:10.1016/j.cell.2007.12.034.
|
[36] | Nieuwkoop PD, Sutasurya LA (1979) Primordial Germ Cells in the Chordates: Embryogenesis and Phylogenesis. Cambridge University Press.
|
[37] | Grandi G, Giovannini S, Chicca M (2007) Gonadogenesis in early developmental stages of Acipenser naccarii and influence of estrogen immersion on feminization. Journal of Applied Ichthyology 23: 3–8 doi:10.1111/j.1439-0426.2006.00819.x.
|
[38] | Grandi G, Chicca M (2008) Histological and ultrastructural investigation of early gonad development and sex differentiation in Adriatic sturgeon (Acipenser naccarii, Acipenseriformes, Chondrostei). J Morphol 269: 1238–1262 doi:10.1002/jmor.10657.
|
[39] | Bolker JA (1994) Comparison of Gastrulation in Frogs and Fish. Integrative and Comparative Biology 34: 313–322 doi:10.1093/icb/34.3.313.
|
[40] | K?prunner M, Thisse C, Thisse B, Raz E (2001) A zebrafish nanos-related gene is essential for the development of primordial germ cells. Gene Dev 15: 2877–2885.
|
[41] | Saito T, Fujimoto T, Maegawa S, Inoue K, Tanaka M, et al. (2006) Visualization of primordial germ cells in vivo using GFP-nos1 3’UTR mRNA. Int J Dev Biol 50: 691–699 doi:10.1387/ijdb.062143ts.
|
[42] | Bontems F, Stein A, Marlow F, Lyautey J, Gupta T, et al. (2009) Bucky Ball Organizes Germ Plasm Assembly in Zebrafish. Current Biology 19: 414–422 doi:10.1016/j.cub.2009.01.038.
|
[43] | Saito T, Goto R, Arai K, Yamaha E (2008) Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation. Biology of Reproduction 78: 159–166 doi:10.1095/biolreprod.107.060038.
|
[44] | Saito T, Goto R, Fujimoto T, Kawakami Y, Arai K, et al. (2010) Inter-species transplantation and migration of primordial germ cells in cyprinid fish. Int J Dev Biol 54: 1479–1484 doi:10.1387/ijdb.103111ts.
|
[45] | Saito T, Goto R, Kawakami Y, Nomura K, Tanaka H, et al.. (2011) The mechanism for primordial germ-cell migration is conserved between Japanese eel and zebrafish. PLoS ONE 6: e24460–. doi:10.1371/journal.pone.0024460.
|
[46] | Goto R, Saito T, Takeda T, Fujimoto T, Takagi M, et al. (2012) Germ cells are not the primary factor for sexual fate determination in goldfish. Developmental Biology 370: 98–109. doi: 10.1016/j.ydbio.2012.07.010
|
[47] | Extavour CGM (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130: 5869–5884 doi:10.1242/dev.00804.
|
[48] | Ewen-Campen B, Schwager EE, Extavour CGM (2009) The molecular machinery of germ line specification. Mol Reprod Dev 77: 3–18 doi:10.1002/mrd.21091.
|
[49] | Mishima Y, Giraldez AJ, Takeda Y, Fujiwara T, Sakamoto H, et al. (2006) Differential Regulation of Germline mRNAs in Soma and Germ Cells by Zebrafish miR-430. Current Biology 16: 2135–2142 doi:10.1016/j.cub.2006.08.086.
|
[50] | Giraldez AJ (2006) Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs. Science 312: 75–79 doi:10.1126/science.1122689.
|
[51] | Mishima Y (2011) Widespread roles of microRNAs during zebrafish development and beyond. Development.
|
[52] | Ikenishi K, Kotani M, Tanabe K (1974) Ultrastructural changes associated with UV irradiation in the “germinal plasm” of Xenopus laevis. Developmental Biology 36: 155–168. doi: 10.1016/0012-1606(74)90198-5
|
[53] | Marlow FL, Mullins MC (2008) Bucky ball functions in Balbiani body assembly and animal-vegetal polarity in the oocyte and follicle cell layer in zebrafish. Developmental Biology 321: 40–50 doi:10.1016/j.ydbio.2008.05.557.
|
[54] | Zelazowska M, Kilarski W, Bilinski SM, Podder DD, Kloc M (2007) Balbiani cytoplasm in oocytes of a primitive fish, the sturgeon Acipenser gueldenstaedtii, and its potential homology to the Balbiani body (mitochondrial cloud) of Xenopus laevis oocytes. Cell Tissue Res 329: 137–145 doi:10.1007/s00441-007-0403-9.
|
[55] | Extavour CGM (2007) Evolution of the bilaterian germ line: lineage origin and modulation of specification mechanisms. Integrative and Comparative Biology 47: 770–785 doi:10.1093/icb/icm027.
|
[56] | Johnson AD, Drum M, Bachvarova RF, Masi T, White ME, et al. (2003) Evolution of predetermined germ cells in vertebrate embryos: implications for macroevolution. Evolution & Development 5: 414–431. doi: 10.1046/j.1525-142x.2003.03048.x
|
[57] | Johnson AD, Richardson E, Bachvarova RF, Crother BI (2011) Evolution of the germ line-soma relationship in vertebrate embryos. Reproduction 141: 291–300 doi:10.1530/REP-10-0474.
|
[58] | Bachvarova RF, Crother BI, Johnson AD (2009) Evolution of germ cell development in tetrapods: comparison of urodeles and amniotes. Evolution & Development 11: 603–609 doi:10.1111/j.1525-142X.2009.00366.x.
|
[59] | MacArthur H, Houston DW, Bubunenko M, Mosquera L, King ML (2000) DEADSouth is a germ plasm specific DEAD-box RNA helicase in Xenopus related to eIF4A. Mechanisms of Development 95: 291–295. doi: 10.1016/s0925-4773(00)00357-9
|
[60] | Hudson C, Woodland HR (1998) Xpat, a gene expressed specifically in germ plasm and primordial germ cells of Xenopus laevis. Mechanisms of Development 73: 159–168. doi: 10.1016/s0925-4773(98)00047-1
|
[61] | Sekizaki H, Takahashi S, Tanegashima K, Onuma Y, Haramoto Y, et al. (2004) Tracing of Xenopus tropicalis germ plasm and presumptive primordial germ cells with the Xenopus tropicalis DAZ-like gene. Dev Dyn 229: 367–372 doi:10.1002/dvdy.10448.
|
[62] | Berekelya LA, Ponomarev MB, Luchinskaya NN, Belyavsky AV (2003) Xenopus Germes encodes a novel germ plasm-associated transcript. Gene Expression Patterns 3: 521–524. doi: 10.1016/s1567-133x(03)00055-3
|
[63] | Horvay K, Clau?en M, Katzer M, Landgrebe J, Pieler T (2006) Xenopus Dead end mRNA is a localized maternal determinant that serves a conserved function in germ cell development. Developmental Biology 291: 1–11 doi:10.1016/j.ydbio.2005.06.013.
|
[64] | Venkatarama T, Lai F, Luo X, Zhou Y, Newman K, et al. (2010) Repression of zygotic gene expression in the Xenopus germline. Development 137: 651–660 doi:10.1242/dev.038554.
|
[65] | Strome S, Lehmann R (2007) Germ versus soma decisions: lessons from flies and worms. Science 316: 392–393 doi:10.1126/science.1140846.
|
[66] | Mizuno T, Yamaha E, Wakahara M, Kuroiwa A, Takeda H (1996) Mesoderm induction in zebrafish. Nature 383: 131–132. doi: 10.1038/383131a0
|
[67] | Yamaha E, Mizuno T, Hasebe Y, Takeda H, Yamazaki F (1998) Dorsal specification in blastoderm at the blastula stage in the goldfish, Carassius auratus. Dev Growth Differ 40: 267–275. doi: 10.1046/j.1440-169x.1998.t01-1-00002.x
|
[68] | Maegawa S, Yasuda K, Inoue K (1999) Maternal mRNA localization of zebrafish DAZ-like gene. Mechanisms of Development 81: 223–226. doi: 10.1016/s0925-4773(98)00242-1
|
[69] | Buchholz DR, Singamsetty S, Karadge U, Williamson S, Langer CE, et al. (2007) Nutritional endoderm in a direct developing frog: a potential parallel to the evolution of the amniote egg. Dev Dyn 236: 1259–1272 doi:10.1002/dvdy.21153.
|
[70] | Elinson RP, Sabo MC, Fisher C, Yamaguchi T, Orii H, et al. (2011) Germ plasm in Eleutherodactylus coqui, a direct developing frog with large eggs. EvoDevo 2: 20 doi:10.1186/2041-9139-2-20.
|