全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Positive Network Assortativity of Influenza Vaccination at a High School: Implications for Outbreak Risk and Herd Immunity

DOI: 10.1371/journal.pone.0087042

Full-Text   Cite this paper   Add to My Lib

Abstract:

Schools are known to play a significant role in the spread of influenza. High vaccination coverage can reduce infectious disease spread within schools and the wider community through vaccine-induced immunity in vaccinated individuals and through the indirect effects afforded by herd immunity. In general, herd immunity is greatest when vaccination coverage is highest, but clusters of unvaccinated individuals can reduce herd immunity. Here, we empirically assess the extent of such clustering by measuring whether vaccinated individuals are randomly distributed or demonstrate positive assortativity across a United States high school contact network. Using computational models based on these empirical measurements, we further assess the impact of assortativity on influenza disease dynamics. We found that the contact network was positively assortative with respect to influenza vaccination: unvaccinated individuals tended to be in contact more often with other unvaccinated individuals than with vaccinated individuals, and these effects were most pronounced when we analyzed contact data collected over multiple days. Of note, unvaccinated males contributed substantially more than unvaccinated females towards the measured positive vaccination assortativity. Influenza simulation models using a positively assortative network resulted in larger average outbreak size, and outbreaks were more likely, compared to an otherwise identical network where vaccinated individuals were not clustered. These findings highlight the importance of understanding and addressing heterogeneities in seasonal influenza vaccine uptake for prevention of large, protracted school-based outbreaks of influenza, in addition to continued efforts to increase overall vaccine coverage.

References

[1]  Chowell G, Miller MA, Viboud C (2008) Seasonal influenza in the United States, France, and Australia: transmission and prospects for control. Epidemiol Infect 136: 852–864 doi:10.1017/S0950268807009144.
[2]  Heymann A, Chodick G, Reichman B, Kokia E, Laufer J (2004) Influence of school closure on the incidence of viral respiratory diseases among children and on health care utilization. Pediatr Infect Dis J 23: 675–677 doi:10.1097/01.inf.0000128778.54105.06.
[3]  Hens N, Ayele GM, Goeyvaerts N, Aerts M, Mossong J, et al. (2009) Estimating the impact of school closure on social mixing behaviour and the transmission of close contact infections in eight European countries. BMC Infect. Dis 9: 187 doi:10.1186/1471-2334-9-1874.
[4]  Cauchemez S, Valleron A-J, Boelle P-Y, Flahault A, Ferguson NM (2008) Estimating the impact of school closure on influenza transmission from Sentinel data. Nature 452: 750–754 doi:10.1038/nature06732.
[5]  Mossong J, Hens N, Jit M, Beutels P, Auranen K, et al. (2008) Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med 5: e74 doi:10.1371/journal.pmed.0050074.
[6]  Sauerbrei A, Schmidt-Ott R, Hoyer H, Wutzler P (2009) Seroprevalence of influenza A and B in German infants and adolescents. Med Microbiol Immunol 198: 93–101 doi:10.1007/s00430-009-0108-7.
[7]  Li CC, Wang L, Eng HL, You HL, Chang LS, et al. (2010) Correlation of pandemic (H1N1) 2009 viral load with disease severity and prolonged viral shedding in children. Emerg Infect Dis 16: 1265–1272 doi:10.3201/eid1608.091918.
[8]  Frank AL, Taber LH, Wells CR, Wells JM, Glezen WP, et al. (1981) Patterns of shedding of myxoviruses and paramyxoviruses in children. J Infect Dis 144: 433–441 doi:10.1093/infdis/144.5.4339.
[9]  Englund H, Campe H, Hautmann W (2013) Effectiveness of trivalent and monovalent influenza vaccines against laboratory-confirmed influenza infection in persons with medically attended influenza-like illness in Bavaria, Germany, 2010/2011 season. Epidemiol Infect 41: 1807–1815 doi:10.1017/S0950268812002282.
[10]  Germann TC, Kadau K, Longini IM, Macken CA (2006) Mitigation strategies for pandemic influenza in the United States. Proc Natl Acad Sci U S A 103: 5935–5940 doi:10.1073/pnas.0601266103.
[11]  Ferguson NM, Cummings DAT, Fraser C, Cajka JC, Cooley PC, et al. (2006) Strategies for mitigating an influenza pandemic. Nature 442: 448–452 doi:10.1038/nature04795.
[12]  Baguelin M, Flasche S, Camacho A, Demiris N, Miller E, et al. (2013) Assessing optimal target populations for influenza vaccination programmes: an evidence synthesis and modelling study. PLoS Med 10: e1001527 doi:10.1371/journal.pmed.1001527.
[13]  Anderson RM, May RM (1985) Vaccination and herd immunity to infectious diseases. Nature 318: 323, doi:10.1038/318323a0.
[14]  John TJ, Samuel R (2000) Herd immunity and herd effect: new insights and definitions. Eur J Epidemiol 16: 601–606.
[15]  Anderson R (1992) Infectious diseases of humans: dynamics and control. Am J Pub Health 16: 202–212.
[16]  Jansen VAA, Stollenwerk N, Jensen HJ, Ramsay ME, Edmunds WJ, et al. (2003) Measles outbreaks in a population with declining vaccine uptake. Science 301: 804 doi:10.1126/science.108672617.
[17]  Glanz JM, McClure DL, Magid DJ, Daley MF, France EK, et al. (2009) Parental refusal of pertussis vaccination is associated with an increased risk of pertussis infection in children. Pediatrics 123: 1446–1451 doi:10.1542/peds.2008-2150.
[18]  van den Hof S, Meffre CM, Conyn-van Spaendonck MA, Woonink F, de Melker HE, et al. (2001) Measles outbreak in a community with very low vaccine coverage, the Netherlands. Emerg Infect Dis 7: 593–597 doi:10.3201/eid0703.010343.
[19]  Newman MEJ (2002) Assortative mixing in networks. Phys Rev Lett 89 doi:10.1103/PhysRevLett.89.208701.
[20]  Newman MEJ (2003) Mixing patterns in networks. Phys Rev E 67 doi:10.1103/PhysRevE.67.026126.
[21]  Salathé M, Bonhoeffer S (2008) The effect of opinion clustering on disease outbreaks. J R Soc Interface 5: 1505–1508 doi:10.1098/rsif.2008.0271.
[22]  Salathé M, Khandelwal S (2011) Assessing vaccination sentiments with online social media: implications for infectious disease dynamics and control. PLoS Comput Biol 7: e1002199 doi:10.1371/journal.pcbi.1002199.
[23]  Ball F, Mollison D, Scalia-Toma G (1997) Epidemics with two levels of mixing. Ann App Prob 7: 46–89 doi:10.1214/aoap/1034625252.
[24]  Glezen WP, Gaglani MJ, Kozinetz CA, Piedra PA (2010) Direct and indirect effectiveness of influenza vaccination delivered to children at school preceding an epidemic caused by 3 new influenza virus variants. J Infect Dis 202: 1626–1633 doi:10.1086/657089.
[25]  Kazandjieva MA, Lee JW, Salathé M, Feldman MW, Jones JH, et al.. (2010) Experiences in measuring a human contact network for epidemiology research. Proceedings of the 6th workshop on hot topics in embedded network sensors.
[26]  Salathé M, Kazandjieva M, Lee JW, Levis P, Feldman MW, et al. (2010) A high-resolution human contact network for infectious disease transmission. Proc Natl Acad Sci U S A 107: 22020–22025 doi:10.1073/pnas.1009094108.
[27]  Basta NE, Halloran ME, Matrajt L, Longini IM (2008) Estimating influenza vaccine efficacy from challenge and community-based study data. Am J Epidemiol 168: 1343–1352 doi:10.1093/aje/kwn259.
[28]  Belshe RB, Edwards KM, Vesikari T, Black SV, Walker RE, et al. (2007) Live attenuated versus inactivated influenza vaccine in infants and young children. N Engl J Med 356: 685–696 doi:10.1056/NEJMoa065368.
[29]  Herrera GA, Iwane MK, Cortese M, Brown C, Gershman K, et al. (2007) Influenza vaccine effectiveness among 50–64-year-old persons during a season of poor antigenic match between vaccine and circulating influenza virus strains: Colorado, United States, 2003–2004. Vaccine 25: 154–160 doi:10.1016/j.vaccine.2006.05.129.
[30]  Fleming DM, Crovari P, Wahn U, Klemola T, Schlesinger Y, et al. (2006) Comparison of the efficacy and safety of live attenuated cold-adapted influenza vaccine, trivalent, with trivalent inactivated influenza virus vaccine in children and adolescents with asthma. Pediatr Infect Dis J 25: 860–869 doi:10.1097/01.inf.0000237797.14283.cf.
[31]  Osterholm MT, Kelley NS, Sommer A, Belongia EA (2012) Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect Dis 12: 36–44 doi:10.1016/S1473-3099(11)70295-X.
[32]  Stephenson I, Nicholson KG (2001) Influenza: vaccination and treatment. Europ Resp J 17: 1282–1293 doi:10.1183/09031936.01.00084301.
[33]  Takayama M, Wetmore CM, Mokdad AH (2012) Characteristics associated with the uptake of influenza vaccination among adults in the United States. Prev Med 54: 358–362 doi:10.1016/j.ypmed.2012.03.00834.
[34]  Wasserman S, Faust K (1995) Social Network Analysis: Methods and Applications. Cambridge University Press, UK
[35]  Szendroi B, Csányi G (2004) Polynomial epidemics and clustering in contact networks. Proc Biol Sci 271 Suppl 5: S364–6 doi:10.1098/rsbl.2004.0188.
[36]  Eames KT (2008) Modelling disease spread through random and regular contacts in clustered populations. Theo Pop Biol 73: 104–111 doi:10.1016/j.tpb.2007.09.007.
[37]  Smieszek T, Fiebig L, Scholz RW (2009) Models of epidemics: when contact repetition and clustering should be included. Theor Biol Med Model 6: 11 doi:10.1186/1742-4682-6-11.
[38]  May RM (2006) Network structure and the biology of populations. Trends Ecol Evol 7: 394–394399 doi:10.1016/j.tree.2006.03.013.
[39]  Salathé M, Jones JH (2010) Dynamics and control of diseases in networks with community structure. PLoS Comput Biol 6: e1000736 doi:10.1371/journal.pcbi.1000736.
[40]  Christley RM, Pinchbeck GL, Bowers RG, Clancy D, French NP, et al. (2005) Infection in social networks: using network analysis to identify high-risk individuals. Am J Epidemiol 162: 1024–1031 doi:10.1093/aje/kwi308.
[41]  Bell DC, Atkinson JS, Carlson JW (1999) Centrality measures for disease transmission networks. Social Networks 21: 1–21 doi:10.1016/S0378-8733(98)00010-0.
[42]  Barrat A (2004) The architecture of complex weighted networks. Proc Natl Acad Sci U S A 101: 3747–3752 doi:10.1073/pnas.0400087101.
[43]  Shim E, Galvani AP (2012) Distinguishing vaccine efficacy and effectiveness. Vaccine doi:10.1016/j.vaccine.2012.08.045.
[44]  Nichol KL (2006) Improving influenza vaccination rates among adults. Cleve Clin J Med 73: 1009–1015 doi:10.3949/ccjm.73.11.1009.
[45]  Holm MV, Blank PR, Szucs TD (2007) Developments in influenza vaccination coverage in England, Scotland and Wales covering five consecutive seasons from 2001 to 2006. Vaccine 25: 7931–7938 doi:10.1016/j.vaccine.2007.09.022.
[46]  Basta NE, Chao DL, Halloran ME, Matrajt L, Longini IM (2009) Strategies for pandemic and seasonal influenza vaccination of schoolchildren in the United States. Am J Epidemiol 170: 679–686 doi:10.1093/aje/kwp237.
[47]  Ira M Longini J, Halloran ME (2005) Strategy for distribution of influenza vaccine to high-risk groups and children. Am J Epidemiol 161: 303–306 doi:10.1093/aje/kwi053.
[48]  http://www.cdc.gov/flu/professionals/vac?cination
[49]  Read JM, Edmunds WJ, Riley S, Lessler J, Cummings DAT (2012) Close encounters of the infectious kind: methods to measure social mixing behaviour. Epidemiol Infect 140: 2117–2130 doi:10.1017/S0950268812000842.
[50]  Haas CN, Rose JB, Gerba CP (1999) Quantitative Microbial Risk Assessment. John Wiley & Sons
[51]  Goeyvaerts N, Hens N, Ogunjimi B, Aerts M, Shkedy Z, et al. (2010) Estimating infectious disease parameters from data on social contacts and serological status. J Roy Stat Soc: Series C (Applied Statistics) 59: 255–277 doi:10.1111/j.1467-9876.2009.00693.
[52]  Melegaro A, Jit M, Gay N, Zagheni E, Edmunds WJ (2011) What types of contacts are important for the spread of infections? Using contact survey data to explore European mixing patterns. Epidemics 3: 143–151 doi:10.1016/j.epidem.2011.04.001.
[53]  Reichardt J, Bornholdt S (2006) Statistical mechanics of community detection. Phys Rev E 74: 016110 doi:10.1103/PhysRevE.74.016110.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133