All Title Author
Keywords Abstract

PLOS ONE  2014 

The Lilliput Effect in Colonial Organisms: Cheilostome Bryozoans at the Cretaceous–Paleogene Mass Extinction

DOI: 10.1371/journal.pone.0087048

Full-Text   Cite this paper   Add to My Lib

Abstract:

Consistent trends towards decreasing body size in the aftermath of mass extinctions – Lilliput effects – imply a predictable response among unitary animals to these events. The occurrence of Lilliput effects has yet to be widely tested in colonial organisms, which are of particular interest as size change may potentially occur at the two hierarchical levels of the colony and the individual zooids. Bryozoans are particularly useful organisms in which to study colonial size response as they have well-defined zooids. Additionally, a number of analyses of present-day bryozoans have shown that zooid size reflects local environmental conditions, most notably seawater temperature and possibly also food supply. Following the hypothesised decline in primary productivity at the Cretaceous–Paleogene (K–Pg) mass extinction, it is predicted that bryozoan zooid size should decline in the early Paleogene, resulting in a Lilliput effect. To test this prediction, zooid size was compared across the K–Pg boundary at the assemblage level and also within 4 surviving genera. Analysis of 59 bryozoan species from assemblages on either side of the K–Pg boundary showed no significant change in zooid length. Zooid size was also measured in 98 Maastrichtian colonies and 162 Danian colonies belonging to four congeneric species. Only one of these genera showed a significant size decrease across the K–Pg boundary, the other three maintaining constant zooidal lengths, widths and areas. Additionally, the sizes of 210 Maastrichtian colonies and 163 Danian colonies did not show consistent size decrease across the K–Pg boundary in these same species, although maximum colony size did decline in three out of four genera. Furthermore, this lack of consistent size change is uniform between two distinct biogeographical regions, Denmark and the southeastern USA.

References

[1]  Urbanek A (1993) Biotic crises in the history of Upper Silurian graptoloids: a palaeobiological model. Hist Biol 7: 29–50. doi: 10.1080/10292389309380442
[2]  Twitchett RJ (2007) The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeogr Palaeoclim Palaeoecol 252: 132–144. doi: 10.1016/j.palaeo.2006.11.038
[3]  Wade BS, Twitchett RJ (2009) Extinction, dwarfing and the Lilliput effect. Palaeogeogr Palaeoclim Palaeoecol 284: 1–3. doi: 10.1016/j.palaeo.2009.08.019
[4]  Nützel A (2005) A new Early Triassic gastropod genus and the recovery of gastropods from the Permian/Triassic extinction. Acta Palaeontol Pol 50: 19–24.
[5]  Nützel A (2005) Recovery of gastropods in the Early Triassic. Comptes Rendus Palevol 4: 501–515. doi: 10.1016/j.crpv.2005.02.007
[6]  McGowan AJ, Smith AB, Taylor PD (2009) Faunal diversity, heterogeneity and body size in the Early Triassic: testing post-extinction paradigms in the Virgin Limestone of Utah, USA. Aust J Earth Sci 56: 859–872. doi: 10.1080/08120090903002839
[7]  Brayard A, Nützel A, Stephen DA, Bylund KG, Jenks J, et al. (2010) Gastropod evidence against the Early Triassic Lilliput effect. Geology 38: 147–150. doi: 10.1130/g30553.1
[8]  Huang B, Harper DAT, Zhan R, Rong J (2010) Can the Lilliput Effect be detected in the brachiopod faunas of South China following the terminal Ordovician mass extinction? Palaeogeogr Palaeoclim Palaeoecol 285: 277–286. doi: 10.1016/j.palaeo.2009.11.020
[9]  Metcalfe B, Twitchett RJ, Price-Lloyd N (2011) Changes in size and growth rate of “Lilliput” animals in the earliest Triassic. Palaeogeogr Palaeoclim Palaeoecol 308: 171–180. doi: 10.1016/j.palaeo.2010.09.011
[10]  Harries PJ, Knorr PO (2009) What does the “Lilliput Effect” mean? Palaeogeogr Palaeoclim Palaeoecol 284: 4–10. doi: 10.1016/j.palaeo.2009.08.021
[11]  O'Dea A, Okamura B (2000) Intracolony variation in zooid size in cheilostome bryozoans as a new technique for investigating palaeoseasonality. Palaeogeogr Palaeoclim Palaeoecol 162: 319–332. doi: 10.1016/s0031-0182(00)00136-x
[12]  Arthur MA, Zachos JC, Jones DS (1987) Primary productivity and the Cretaceous/Tertiary boundary event in the oceans. Cretac Res 8: 43–54. doi: 10.1016/0195-6671(87)90011-5
[13]  Smith AB, Jeffery CH (1998) Selectivity of extinction among sea urchins at the end of the Cretaceous period. Nature 392: 69–71.
[14]  Jablonski D, Raup D (1995) Selectivity of end-Cretaceous marine bivalve extinctions. Science 268: 389–391. doi: 10.1126/science.11536722
[15]  Jeffery CH (2001) Heart urchins at the Cretaceous/Tertiary boundary: a tale of two clades. Paleobiology 27: 140–158. doi: 10.1666/0094-8373(2001)027<0140:huatct>2.0.co;2
[16]  Lockwood R (2005) Body size, extinction events, and the early Cenozoic record of veneroid bivalves: a new role for recoveries? Paleobiology 31: 578–590. doi: 10.1666/0094-8373(2005)031[0578:bseeat]2.0.co;2
[17]  Aberhan M, Weidemeyer S, Kiessling W, Scasso R, Medina F (2007) Faunal evidence for reduced productivity and uncoordinated recovery in Southern Hemisphere Cretaceous-Paleogene boundary sections. Geology 35: 227–230. doi: 10.1130/g23197a.1
[18]  O'Dea A, H?kansson E, Taylor PD, Okamura B (2011) Environmental change prior to the K–T boundary inferred from temporal variation in the morphology of cheilostome bryozoans. Palaeogeogr Palaeoclim Palaeoecol 308: 502–512. doi: 10.1016/j.palaeo.2011.06.001
[19]  Macleod N, Rawson PF, Forey PL, Banner FT, Boudagher-Fadel MK, et al. (1997) The Cretaceous–Tertiary biotic transition. J Geol Soc Lond 154: 265–292. doi: 10.1144/gsjgs.154.2.0265
[20]  Sogot CE, Harper EM, Taylor PD (2013) Biogeographical and ecological patterns in bryozoans across the Cretaceous–Paleogene boundary: Implications for the phytoplankton collapse hypothesis. Geology 41: 631–634. doi: 10.1130/g34020.1
[21]  Bryan JR, Jones DS (1989) Fabric of the Cretaceous-Tertiary marine macrofaunal transition at Braggs, Alabama. Palaeogeogr Palaeoclim Palaeoecol 69: 279–301. doi: 10.1016/0031-0182(89)90170-3
[22]  Schulte P, Speijer RP (2009) Late Maastrichtian-Early Paleocene sea level and climate changes in the Antioch Church Core (Alabama, Gulf of Mexico margin, USA): A multi-proxy approach. Geol Acta 7: 11–34.
[23]  Mancini EA, Puckett TM, Tew BH, Smith CC (1995) Upper Cretaceous Sequence Stratigraphy of the Mississippi-Alabama Area. Gulf Coast Assoc Geol Soc Trans 45: 377–384.
[24]  Anderskouv K, Damholt T, Surlyk F (2007) Late Maastrichtian chalk mounds, Stevns Klint, Denmark – Combined physical and biogenic structures. Sediment Geol 200: 57–72. doi: 10.1016/j.sedgeo.2007.03.005
[25]  Canu F, Bassler RS (1920) North American Early Tertiary Bryozoa. Smithson Inst United States Natl Mus Bulletin 106: 897. doi: 10.5479/si.03629236.106.i
[26]  Taylor PD, McKinney FK (2006) Cretaceous Bryozoa from the Campanian and Maastrichtian of the Atlantic and Gulf Coastal Plains, United States. Scr Geol 132: 1–346.
[27]  Okamura B, Bishop JDD (1988) Zooid size in cheilostome bryozoans as an indicator of relative palaeotemperature. Palaeogeogr Palaeoclim Palaeoecol 66: 145–152. doi: 10.1016/0031-0182(88)90197-6
[28]  Sokal RR, Rohlf FJ (1995) Biometry. 3rd ed. New York: W. H. Freeman and Company. 850 p.
[29]  Grafen A, Hails R (2002) Modern statistics for the life sciences. Oxford UK: Oxford University Press. 351 p.
[30]  Dytham C (2003) Choosing and using statistics – a biologist's guide. 2nd ed. Oxford UK: Blackwell. 248 p.
[31]  Okamura B, O'Dea A, Knowles T (2011) Bryozoan growth and environmental reconstruction by zooid size variation. Mar Ecol Prog Ser 430: 133–146. doi: 10.3354/meps08965
[32]  Boardman RS, Cheetham AH, Cook PL (1969) Intracolony variation and the genus concept in Bryozoa. Proceedings of the North American Paleontological Convention. Chicago. 294–320.
[33]  Lombardi C, Cocito S, Occhipinti-Ambrogi A, Hiscock K (2006) The influence of seawater temperature on zooid size and growth rate in Pentapora fascialis (Bryozoa: Cheilostomata). Mar Biol 149: 1103–1109. doi: 10.1007/s00227-006-0295-3
[34]  Yagunova EB, Ostrovsky N (2008) Encrusting bryozoan colonies on stones and algae: variability of zooidal size and its possible causes. J Mar Biol Assoc United Kingd 88: 901–908. doi: 10.1017/s0025315408001847
[35]  Kaljo D (1996) Diachronous recovery patterns in Early Silurian corals, graptolites and acritarchs. Biotic Recovery from Mass Extinction Events. Geological Society Special Publication. Vol. 102: 127–133. doi: 10.1144/gsl.sp.1996.001.01.10
[36]  Winston JE (1976) Experimental culture of the estuarine ectoproct Conopeum tenuissimum from Chesapeake Bay. Biol Bull 150: 318–335. doi: 10.2307/1540477
[37]  O'Dea A, Okamura B (1999) Influence of seasonal variation in temperature, salinity and food availability on module size and colony growth of the estuarine bryozoan Conopeum seurati. Mar Biol 135: 581–588. doi: 10.1007/s002270050659
[38]  Hageman SJ, Needham LL, Todd CD (2009) Threshold effects of food concentration on the skeletal morphology of the bryozoan Electra pilosa (Linnaeus, 1767). Lethaia 42: 438–451. doi: 10.1111/j.1502-3931.2009.00164.x
[39]  Savrda CE (1993) Ichnosedimentologic evidence for a noncatastrophic origin of Cretaceous–Tertiary boundary sands in Alabama. Geology 21: 1075–1078. doi: 10.1130/0091-7613(1993)021<1075:iefano>2.3.co;2
[40]  Keller G, Abramovich S (2009) Lilliput effect in late Maastrichtian planktic foraminifera: Response to environmental stress. Palaeogeogr Palaeoclim Palaeoecol 284: 47–62. doi: 10.1016/j.palaeo.2009.08.029
[41]  Knowles T, Taylor PD, Williams M, Haywood AM, Okamura B (2009) Pliocene seasonality across the North Atlantic inferred from cheilostome bryozoans. Palaeogeogr Palaeoclim Palaeoecol 277: 226–235. doi: 10.1016/j.palaeo.2009.04.006
[42]  Hunter E, Hughes R (1994) The influence of temperature, food ration and genotype on zooid size in Celleporella hyalina (L.). Biology and palaeobiology of bryozoans. Fredensborg: Olsen & Olsen. 83–86.
[43]  O'Dea A, Okamura B (2000) Life history and environmental inference through retrospective morphometric analysis of bryozoans: a preliminary study. J Mar Biol Assoc United Kingd 80: 1127–1128. doi: 10.1017/s0025315400003210
[44]  O'Dea A (2003) Seasonality and zooid size variation in Panamanian encrusting bryozoans. J Mar Biol Assoc United Kingd 83: 1107–1108. doi: 10.1017/s0025315403008348h
[45]  Amui-Vedel AM, Hayward PJ, Porter JS (2007) Zooid size and growth rate of the bryozoan Cryptosula pallasiana Moll in relation to temperature, in culture and in its natural environment. J Exp Mar Biol Ecol 353: 1–12. doi: 10.1016/j.jembe.2007.02.020
[46]  O'Dea A, Rodriguez F, Romero T (2007) Response of zooid size in Cupuladria exfragminis (Bryozoa) to simulated upwelling temperatures. Mar Ecol 28: 315–323. doi: 10.1111/j.1439-0485.2006.00144.x
[47]  Knowles T, Leng MJ, Williams M, Taylor PD, Sloane HJ, et al. (2010) Interpreting seawater temperature range using oxygen isotopes and zooid size variation in Pentapora foliacea (Bryozoa). Mar Biol 157: 1171–1180. doi: 10.1007/s00227-010-1397-5
[48]  Kuklinski P, Taylor PD (2008) Are bryozoans adapted for living in the Arctic? Va Mus Nat Hist Spec Publ 15: 101–110.
[49]  Berning B (2007) The Mediterranean bryozoan Myriapora truncata (Pallas, 1766): a potential indicator of (Palaeo-) environmental conditions. Lethaia 40: 221–232. doi: 10.1111/j.1502-3931.2007.00019.x
[50]  Fraiser ML, Bottjer DJ (2004) The Non-Actualistic Early Triassic Gastropod Fauna: A Case Study of the Lower Triassic Sinbad Limestone Member. Palaios 19: 259–275. doi: 10.1669/0883-1351(2004)019<0259:tnetgf>2.0.co;2
[51]  He W, Shi GR, Feng Q, Campi MJ, Gu S, et al. (2007) Brachiopod miniaturization and its possible causes during the Permian–Triassic crisis in deep water environments, South China. Palaeogeogr Palaeoclim Palaeoecol 252: 145–163. doi: 10.1016/j.palaeo.2006.11.040
[52]  Wade BS, Olsson RK (2009) Investigation of pre-extinction dwarfing in Cenozoic planktonic foraminifera. Palaeogeogr Palaeoclim Palaeoecol 284: 39–46. doi: 10.1016/j.palaeo.2009.08.026
[53]  Tobin TS, Ward PD, Steig EJ, Olivero EB, Hilburn IA, et al. (2012) Extinction patterns, δ18 O trends, and magnetostratigraphy from a southern high-latitude Cretaceous–Paleogene section: Links with Deccan volcanism. Palaeogeogr Palaeoclim Palaeoecol 350–352: 180–188. doi: 10.1016/j.palaeo.2012.06.029
[54]  He WH, Twitchett RJ, Zhang Y, Shi GR, Feng QL, et al. (2010) Controls on body size during the Late Permian mass extinction event. Geobiology 8: 391–402. doi: 10.1111/j.1472-4669.2010.00248.x
[55]  Morten SD, Twitchett RJ (2009) Fluctuations in the body size of marine invertebrates through the Pliensbachian–Toarcian extinction event. Palaeogeogr Palaeoclim Palaeoecol 284: 29–38. doi: 10.1016/j.palaeo.2009.08.023

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal