全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Activation of Transcription Factor Nrf2 Signalling by the Sphingosine Kinase Inhibitor SKI-II Is Mediated by the Formation of Keap1 Dimers

DOI: 10.1371/journal.pone.0088168

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Anti-oxidant capacity is crucial defence against environmental or endogenous oxidative stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that plays a key defensive role against oxidative and cytotoxic stress and cellular senescence. However, Nrf2 signalling is impaired in several aging-related diseases, such as chronic pulmonary obstructive disease (COPD), cancer, and neurodegenerative diseases. Thus, novel therapeutics that enhance Nrf2 signalling are an attractive approach to treat these diseases. Methodology/Principal Findings Nrf2 was stabilized by SKI-II (2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole), which is a known sphingosine kinase inhibitor, in human bronchial epithelial cell line, BEAS2B, and in primary human bronchial epithelial cells, leading to enhancement of anti-oxidant proteins, such as HO-1, NQO1 and GCLM. The activation of Nrf2 was achieved by the generation of inactive dimerized form of Keap1, a negative regulator of Nrf2 expression, which was independent of sphingosine kinase inhibition. Using mice that were exposed to cigarette smoke, SKI-II induced Nrf2 expression together with HO-1 in their lungs. In addition, SKI-II reduced cigarette smoke mediated oxidative stress, macrophages and neutrophil infiltration and markers of inflammation in mice. Conclusions/Significance SKI-II appears to be a novel activator of Nrf2 signalling via the inactivation of Keap1.

References

[1]  Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, et al. (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A 99: 11908–11913 10.1073/pnas.172398899 [doi];172398899 [pii].
[2]  Barnes PJ, Shapiro SD, Pauwels RA (2003) Chronic obstructive pulmonary disease: molecular and cellular mechanisms. European Respiratory Journal 22: 672–688. doi: 10.1183/09031936.03.00040703
[3]  Cho HY, Kleeberger SR (2010) Nrf2 protects against airway disorders. Toxicol Appl Pharmacol 244: 43–56 S0041-008X(09)00306-8 [pii];10.1016/j.taap.2009.07.024 [doi].
[4]  Makabe S, Takahashi Y, Watanabe H, Murakami M, Ohba T, et al. (2010) Fluvastatin protects vascular smooth muscle cells against oxidative stress through the Nrf2-dependent antioxidant pathway. Atherosclerosis 213: 377–384 S0021-9150(10)00686-6 [pii];10.1016/j.atherosclerosis.2010.07.059 [doi].
[5]  Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, et al. (2006) Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. Plos Medicine 3: 1865–1876. doi: 10.1371/journal.pmed.0030420
[6]  Sykiotis GP, Bohmann D (2010) Stress-Activated Cap‘n’collar Transcription Factors in Aging and Human Disease. Science Signaling 3.
[7]  Yang L, Calingasan NY, Thomas B, Chaturvedi RK, Kiaei M, et al. (2009) Neuroprotective effects of the triterpenoid, CDDO methyl amide, a potent inducer of Nrf2-mediated transcription. PLoS One 4: e5757 10.1371/journal.pone.0005757 [doi].
[8]  Yu S, Khor TO, Cheung KL, Li W, Wu TY, et al. (2010) Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice. PLoS One 5: e8579 10.1371/journal.pone.0008579 [doi].
[9]  Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, et al. (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate for proteasomal degradation of Nrf2. Molecular and Cellular Biology 24: 7130–7139. doi: 10.1128/mcb.24.16.7130-7139.2004
[10]  Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA (2004) The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 24: 8477–8486 10.1128/MCB.24.19.8477-8486.2004 [doi];24/19/8477 [pii].
[11]  Fourquet S, Guerois R, Biard D, Toledano MB (2010) Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation. J Biol Chem.
[12]  Malhotra D, Thimmulappa R, Navas-Acien A, Sandford A, Elliott M, et al. (2008) Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1. American Journal of Respiratory and Critical Care Medicine 178: 592–604. doi: 10.1164/rccm.200803-380oc
[13]  Goven D, Boutten A, Lecon-Malas V, Marchal-Somme J, Amara N, et al. (2008) Altered Nrf2/Keap1-Bach1 equilibrium in pulmonary emphysema. Thorax 63: 916–924. doi: 10.1136/thx.2007.091181
[14]  Crunkhorn S (2012) Deal watch: Abbott boosts investment in NRF2 activators for reducing oxidative stress. Nat Rev Drug Discov 11: 96 nrd3655 [pii];10.1038/nrd3655 [doi].
[15]  Fyrst H, Saba JD (2010) An update on sphingosine-1-phosphate and other sphingolipid mediators. Nature Chemical Biology 6: 489–497. doi: 10.1038/nchembio.392
[16]  Ader I, Brizuela L, Bouquerel P, Malavaud B, Cuvillier O (2008) Sphingosine kinase 1: a new modulator of hypoxia inducible factor 1alpha during hypoxia in human cancer cells. Cancer Res 68: 8635–8642 68/20/8635 [pii];10.1158/0008-5472.CAN-08-0917 [doi].
[17]  Nayak D, Huo Y, Kwang WX, Pushparaj PN, Kumar SD, et al. (2010) Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience 166: 132–144 S0306-4522(09)02055-7 [pii];10.1016/j.neuroscience.2009.12.020 [doi].
[18]  Van Brocklyn JR, Williams JB (2012) The control of the balance between ceramide and sphingosine-1-phosphate by sphingosine kinase: Oxidative stress and the seesaw of cell survival and death. Comp Biochem Physiol B Biochem Mol Biol. S1096-4959(12)00080-2 [pii];10.1016/j.cbpb.2012.05.006 [doi].
[19]  Gandy KA, Obeid LM (2013) Regulation of the sphingosine kinase/sphingosine 1-phosphate pathway. Handb Exp Pharmacol 216: 275–303 10.1007/978-3-7091-1511-4_14 [doi].
[20]  Takuwa N, Ohkura S, Takashima S, Ohtani K, Okamoto Y, et al. (2010) S1P3-mediated cardiac fibrosis in sphingosine kinase 1 transgenic mice involves reactive oxygen species. Cardiovasc Res 85: 484–493 cvp312 [pii];10.1093/cvr/cvp312 [doi].
[21]  Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9: 139–150 nrm2329 [pii];10.1038/nrm2329 [doi].
[22]  Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-Antioxidant Response Element Signaling Pathway and Its Activation by Oxidative Stress. Journal of Biological Chemistry 284: 13291–13295. doi: 10.1074/jbc.r900010200
[23]  Itakura E, Mizushima N (2011) p62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. J Cell Biol 192: 17–27 jcb.201009067 [pii];10.1083/jcb.201009067 [doi].
[24]  Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, et al. (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12: 213–223 ncb2021 [pii];10.1038/ncb2021 [doi].
[25]  Tonelli F, Alossaimi M, Williamson L, Tate RJ, Watson DG, et al. (2013) The sphingosine kinase inhibitor 2-(p-hyroxyanilino)-4-(p-chlorophenyl)th?iazolereduces androgen receptor expression via an oxidative stress-dependent mechanism. Br J Pharmacol 168: 1497–1505 10.1111/bph.12035 [doi].
[26]  Kansanen E, Kivela AM, Levonen AL (2009) Regulation of Nrf2-dependent gene expression by 15-deoxy-Delta12,14-prostaglandin J2. Free Radic Biol Med 47: 1310–1317 S0891-5849(09)00379-7 [pii];10.1016/j.freeradbiomed.2009.06.030 [doi].
[27]  Suh JH, Shenvi SV, Dixon BM, Liu H, Jaiswal AK, et al. (2004) Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci U S A 101: 3381–3386 10.1073/pnas.0400282101 [doi];0400282101 [pii].
[28]  Ito K, Colley T, Mercado N (2012) Geroprotectors as a novel therapeutic strategy for COPD, an accelerating aging disease. Int J Chron Obstruct Pulmon Dis 7: 641–652 10.2147/COPD.S28250 [doi];copd-7-641 [pii].
[29]  Blake DJ, Singh A, Kombairaju P, Malhotra D, Mariani TJ, et al. (2010) Deletion of Keap1 in the lung attenuates acute cigarette smoke-induced oxidative stress and inflammation. Am J Respir Cell Mol Biol 42: 524–536 2009-0054OC [pii];10.1165/rcmb.2009-0054OC [doi].
[30]  Noyan-Ashraf MH, Wu L, Wang R, Juurlink BH (2006) Dietary approaches to positively influence fetal determinants of adult health. FASEB J 20: 371–373 05-4889fje [pii];10.1096/fj.05-4889fje [doi].
[31]  Sussan TE, Rangasamy T, Blake DJ, Malhotra D, El Haddad H, et al. (2009) Targeting Nrf2 with the triterpenoid CDDO-imidazolide attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice. Proceedings of the National Academy of Sciences of the United States of America 106: 250–255. doi: 10.1073/pnas.0804333106
[32]  Fimognari C, Lenzi M, Hrelia P (2008) Interaction of the isothiocyanate sulforaphane with drug disposition and metabolism: pharmacological and toxicological implications. Curr Drug Metab 9: 668–678. doi: 10.2174/138920008785821675
[33]  Kim EH, Deng CX, Sporn MB, Liby KT (2011) CDDO-imidazolide induces DNA damage, G2/M arrest and apoptosis in BRCA1-mutated breast cancer cells. Cancer Prev Res (Phila) 4: 425–434 4/3/425 [pii];10.1158/1940-6207.CAPR-10-0153 [doi].
[34]  Kimura G, Ueda K, Eto S, Watanabe Y, Masuko T, et al. (2013) Toll-like receptor 3 stimulation causes corticosteroid-refractory airway neutrophilia and hyperresponsiveness in mice. Chest 144: 99–105 1559996 [pii];10.1378/chest.12-2610 [doi].
[35]  Loveridge C, Tonelli F, Leclercq T, Lim KG, Long JS, et al. (2010) The sphingosine kinase 1 inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl)t?hiazoleinduces proteasomal degradation of sphingosine kinase 1 in mammalian cells. J Biol Chem 285: 38841–38852 M110.127993 [pii];10.1074/jbc.M110.127993 [doi].
[36]  Tonelli F, Lim KG, Loveridge C, Long J, Pitson SM, et al. (2010) FTY720 and (S)-FTY720 vinylphosphonate inhibit sphingosine kinase 1 and promote its proteasomal degradation in human pulmonary artery smooth muscle, breast cancer and androgen-independent prostate cancer cells. Cell Signal 22: 1536–1542 S0898-6568(10)00152-X [pii];10.1016/j.cellsig.2010.05.022 [doi].
[37]  Tanigawa S, Fujii M, Hou DX (2007) Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radic Biol Med 42: 1690–1703 S0891-5849(07)00148-7 [pii];10.1016/j.freeradbiomed.2007.02.017 [doi].
[38]  Ohnuma T, Nakayama S, Anan E, Nishiyama T, Ogura K, et al. (2010) Activation of the Nrf2/ARE pathway via S-alkylation of cysteine 151 in the chemopreventive agent-sensor Keap1 protein by falcarindiol, a conjugated diacetylene compound. Toxicol Appl Pharmacol 244: 27–36 S0041-008X(09)00519-5 [pii];10.1016/j.taap.2009.12.012 [doi].
[39]  Rachakonda G, Xiong Y, Sekhar KR, Stamer SL, Liebler DC, et al. (2008) Covalent modification at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3. Chem Res Toxicol 21: 705–710 10.1021/tx700302s [doi].
[40]  Groeger AL, Cipollina C, Cole MP, Woodcock SR, Bonacci G, et al. (2010) Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids. Nat Chem Biol 6: 433–441 nchembio.367 [pii];10.1038/nchembio.367 [doi].
[41]  Pang H, Yi P, Wu P, Liu Z, Liu Z, et al. (2011) Effect of lipoxin A4 on lipopolysaccharide-induced endothelial hyperpermeability. ScientificWorldJournal 11: 1056–1067 10.1100/tsw.2011.98 [doi].
[42]  Wei C, Zhu P, Shah SJ, Blair IA (2009) 15-oxo-Eicosatetraenoic acid, a metabolite of macrophage 15-hydroxyprostaglandin dehydrogenase that inhibits endothelial cell proliferation. Mol Pharmacol 76: 516–525 mol.109.057489 [pii];10.1124/mol.109.057489 [doi].
[43]  Mercado N, Thimmulappa R, Thomas CM, Fenwick PS, Chana KK, et al. (2011) Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress. Biochem Biophys Res Commun 406: 292–298 S0006-291X(11)00218-X [pii];10.1016/j.bbrc.2011.02.035 [doi].

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133