全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Cultivation of Corneal Endothelial Cells on a Pericellular Matrix Prepared from Human Decidua-Derived Mesenchymal Cells

DOI: 10.1371/journal.pone.0088169

Full-Text   Cite this paper   Add to My Lib

Abstract:

The barrier and pump functions of the corneal endothelium are essential for the maintenance of corneal transparency. Although corneal transplantation is the only current therapy for treating corneal endothelial dysfunction, the potential of tissue-engineering techniques to provide highly efficient and less invasive therapy in comparison to corneal transplantation has been highly anticipated. However, culturing human corneal endothelial cells (HCECs) is technically difficult, and there is no established culture protocol. The aim of this study was to investigate the feasibility of using a pericellular matrix prepared from human decidua-derived mesenchymal cells (PCM-DM) as an animal-free substrate for HCEC culture for future clinical applications. PCM-DM enhanced the adhesion of monkey CECs (MCECs) via integrin, promoted cell proliferation, and suppressed apoptosis. The HCECs cultured on the PCM-DM showed a hexagonal morphology and a staining profile characteristic of Na+/K+-ATPase and ZO-1 at the plasma membrane in vivo, whereas the control HCECs showed a fibroblastic phenotype. The cell density of the cultured HCECs on the PCM-DM was significantly higher than that of the control cells. These results indicate that PCM-DM provides a feasible xeno-free matrix substrate and that it offers a viable in vitro expansion protocol for HCECs while maintaining cellular functions for use as a subsequent clinical intervention for tissue-engineered based therapy of corneal endothelial dysfunction.

References

[1]  Bourne WM (1998) Clinical estimation of corneal endothelial pump function. Trans Am Ophthalmol Soc 96: 229–239 discussion 239–242.
[2]  Kaufman HE, Katz JI (1977) Pathology of the corneal endothelium. Invest Ophthalmol Vis Sci 16: 265–268.
[3]  Tan DT, Dart JK, Holland EJ, Kinoshita S (2012) Corneal transplantation. Lancet 379: 1749–1761. doi: 10.1016/s0140-6736(12)60437-1
[4]  Melles GR, Ong TS, Ververs B, van der Wees J (2008) Preliminary clinical results of Descemet membrane endothelial keratoplasty. Am J Ophthalmol 145: 222–227. doi: 10.1016/j.ajo.2007.09.021
[5]  Price MO, Price FW Jr (2010) Endothelial keratoplasty - a review. Clin Experiment Ophthalmol 38: 128–140. doi: 10.1111/j.1442-9071.2010.02213.x
[6]  Mehta JS, Chua J, Poh R, Beuerman RW, Tan D (2008) Primary graft failure after Descemet-stripping automated endothelial keratoplasty: clinico-pathological study. Cornea 27: 722–726. doi: 10.1097/ico.0b013e31818147d5
[7]  Terry MA, Chen ES, Shamie N, Hoar KL, Friend DJ (2008) Endothelial cell loss after Descemet's stripping endothelial keratoplasty in a large prospective series. Ophthalmology 115: : 488–496 e483.
[8]  Ishino Y, Sano Y, Nakamura T, Connon CJ, Rigby H, et al. (2004) Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Invest Ophthalmol Vis Sci 45: 800–806. doi: 10.1167/iovs.03-0016
[9]  Mimura T, Yamagami S, Yokoo S, Usui T, Tanaka K, et al. (2004) Cultured human corneal endothelial cell transplantation with a collagen sheet in a rabbit model. Invest Ophthalmol Vis Sci 45: 2992–2997. doi: 10.1167/iovs.03-1174
[10]  Mimura T, Yamagami S, Yokoo S, Yanagi Y, Usui T, et al. (2005) Sphere therapy for corneal endothelium deficiency in a rabbit model. Invest Ophthalmol Vis Sci 46: 3128–3135. doi: 10.1167/iovs.05-0251
[11]  Sumide T, Nishida K, Yamato M, Ide T, Hayashida Y, et al. (2006) Functional human corneal endothelial cell sheets harvested from temperature-responsive culture surfaces. FASEB J 20: 392–394. doi: 10.1096/fj.04-3035fje
[12]  Koizumi N, Sakamoto Y, Okumura N, Okahara N, Tsuchiya H, et al. (2007) Cultivated corneal endothelial cell sheet transplantation in a primate model. Invest Ophthalmol Vis Sci 48: 4519–4526. doi: 10.1167/iovs.07-0567
[13]  Okumura N, Koizumi N, Ueno M, Sakamoto Y, Takahashi H, et al. (2012) ROCK inhibitor converts corneal endothelial cells into a phenotype capable of regenerating in vivo endothelial tissue. Am J Pathol 181: 268–277. doi: 10.1016/j.ajpath.2012.03.033
[14]  Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, et al. (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355: 1210–1221. doi: 10.1056/nejmoa060186
[15]  Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, et al. (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343: 230–238. doi: 10.1056/nejm200007273430401
[16]  Yanaga H, Koga M, Imai K, Yanaga K (2004) Clinical application of biotechnically cultured autologous chondrocytes as novel graft material for nasal augmentation. Aesthetic Plast Surg 28: 212–221. doi: 10.1007/s00266-004-3092-8
[17]  Kinoshita S, Koizumi N, Nakamura T (2004) Transplantable cultivated mucosal epithelial sheet for ocular surface reconstruction. Exp Eye Res 78: 483–491. doi: 10.1016/j.exer.2003.09.004
[18]  Peh GS, Beuerman RW, Colman A, Tan DT, Mehta JS (2011) Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview. Transplantation 91: 811–819. doi: 10.1097/tp.0b013e3182111f01
[19]  Okumura N, Ueno M, Koizumi N, Sakamoto Y, Hirata K, et al. (2009) Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor. Invest Ophthalmol Vis Sci 50: 3680–3687. doi: 10.1167/iovs.08-2634
[20]  Okumura N, Kay EP, Nakahara M, Hamuro J, Kinoshita S, et al. (2013) Inhibition of TGF-beta signaling enables human corneal endothelial cell expansion in vitro for use in regenerative medicine. PLoS One 8: e58000. doi: 10.1371/journal.pone.0058000
[21]  Joyce NC (2003) Proliferative capacity of the corneal endothelium. Prog Retin Eye Res 22: 359–389. doi: 10.1016/s1350-9462(02)00065-4
[22]  Joyce NC (2005) Cell cycle status in human corneal endothelium. Exp Eye Res 81: 629–638. doi: 10.1016/j.exer.2005.06.012
[23]  Miyata K, Drake J, Osakabe Y, Hosokawa Y, Hwang D, et al. (2001) Effect of donor age on morphologic variation of cultured human corneal endothelial cells. Cornea 20: 59–63. doi: 10.1097/00003226-200101000-00012
[24]  Zhu C, Joyce NC (2004) Proliferative response of corneal endothelial cells from young and older donors. Invest Ophthalmol Vis Sci 45: 1743–1751. doi: 10.1167/iovs.03-0814
[25]  Xu C, Inokuma MS, Denham J, Golds K, Kundu P, et al. (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19: 971–974. doi: 10.1038/nbt1001-971
[26]  Nagase T, Ueno M, Matsumura M, Muguruma K, Ohgushi M, et al. (2009) Pericellular matrix of decidua-derived mesenchymal cells: a potent human-derived substrate for the maintenance culture of human ES cells. Dev Dyn 238: 1118–1130. doi: 10.1002/dvdy.21944
[27]  Fukusumi H, Shofuda T, Kanematsu D, Yamamoto A, Suemizu H, et al. (2013) Feeder-free generation and long-term culture of human induced pluripotent stem cells using pericellular matrix of decidua derived mesenchymal cells. PLoS One 8: e55226. doi: 10.1371/journal.pone.0055226
[28]  Malak TM, Bell SC (1994) Structural characteristics of term human fetal membranes: a novel zone of extreme morphological alteration within the rupture site. Br J Obstet Gynaecol 101: 375–386. doi: 10.1111/j.1471-0528.1994.tb11908.x
[29]  Kanematsu D, Shofuda T, Yamamoto A, Ban C, Ueda T, et al. (2011) Isolation and cellular properties of mesenchymal cells derived from the decidua of human term placenta. Differentiation 82: 77–88. doi: 10.1016/j.diff.2011.05.010
[30]  Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6: 331–343. doi: 10.1016/s0092-8674(75)80001-8
[31]  Matsubara M, Tanishima T (1982) Wound-healing of the corneal endothelium in the monkey: a morphometric study. Jpn J Ophthalmol 26: 264–273.
[32]  Matsubara M, Tanishima T (1983) Wound-healing of corneal endothelium in monkey: an autoradiographic study. Jpn J Ophthalmol 27: 444–450.
[33]  Wolfenson H, Lavelin I, Geiger B (2013) Dynamic regulation of the structure and functions of integrin adhesions. Dev Cell 24: 447–458. doi: 10.1016/j.devcel.2013.02.012
[34]  Shima N, Kimoto M, Yamaguchi M, Yamagami S (2011) Increased proliferation and replicative lifespan of isolated human corneal endothelial cells with L-ascorbic acid 2-phosphate. Invest Ophthalmol Vis Sci 52: 8711–8717. doi: 10.1167/iovs.11-7592
[35]  Petersen J, Dandri M, Gupta S, Rogler CE (1998) Liver repopulation with xenogenic hepatocytes in B and T cell-deficient mice leads to chronic hepadnavirus infection and clonal growth of hepatocellular carcinoma. Proc Natl Acad Sci U S A 95: 310–315. doi: 10.1073/pnas.95.1.310
[36]  Nakahara M, Okumura N, Kay EP, Hagiya M, Imagawa K, et al. (2013) Corneal endothelial expansion promoted by human bone marrow mesenchymal stem cell-derived conditioned medium. PLoS One 8: e69009. doi: 10.1371/journal.pone.0069009
[37]  Martin MJ, Muotri A, Gage F, Varki A (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11: 228–232. doi: 10.1038/nm1181
[38]  Anshu A, Price MO, Tan DT, Price FW Jr (2012) Endothelial keratoplasty: a revolution in evolution. Surv Ophthalmol 57: 236–252. doi: 10.1016/j.survophthal.2011.10.005
[39]  Tourtas T, Laaser K, Bachmann BO, Cursiefen C, Kruse FE (2012) Descemet membrane endothelial keratoplasty versus descemet stripping automated endothelial keratoplasty. Am J Ophthalmol 153: 1082–1090 e1082.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133