[1] | Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (2007) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. J Environ Qual 37: 2407 doi: 10.2134/jeq2008.0015br.
|
[2] | Wolf-Gladrow DA, Riebesell U, Burkhardt S, Bijma J (1999) Direct effects of CO2 concentration on growth and isotopic composition of marine plankton. Tellus 51B: 461–476. doi: 10.1034/j.1600-0889.1999.00023.x
|
[3] | Calderia K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425: 365. doi: 10.1038/425365a
|
[4] | Taucher J, Oschlies A (2011) Can we predict the direction of marine primary production change under global warming?. Geophys Res Lett 38. doi: 10.1029/2010GL045934.
|
[5] | Riebesell U, Tortell P (2011) Effects of ocean acidification on pelagic organisms and ecosystems. Ocean Acidification. Oxford University Press. pp. 99–116.
|
[6] | Poulton AJ, Adey TR, Balch WM, Holligan PM (2007) Relating coccolithophore calcification rates to phytoplankton community dynamics: Regional differences and implications for carbon export. Deep Sea Res Part II 54: 538–557. doi: 10.1016/j.dsr2.2006.12.003
|
[7] | Broecker W, Clark E (2009) Ratio of coccolith CaCO3 to foraminifera CaCO3 in late Holocene deep sea sediments. Paleoceanography 24: PA3205 doi: 10.1029/2009pa001731
|
[8] | Balch W, Drapeau D, Bowler B, Booth E (2007) Prediction of pelagic calcification rates using satellite measurements. Deep Sea Res Part II 54: 538–557. doi: 10.1016/j.dsr2.2006.12.006
|
[9] | Bollmann J, Klaas C (2008) Morphological variation of Gephyrocapsa oceanica Kamptner 1943 in plankton samples: implications for ecologic and taxonomic interpretations. Protist 159: 369–381. doi: 10.1016/j.protis.2008.02.001
|
[10] | Balch WM, Holligan PM, Kilpatrick KA (1992) Calcification, photosynthesis and growth of the bloom-forming coccolithophore, Emiliania huxleyi. Cont Shelf Res 12: 1353–1374. doi: 10.1016/0278-4343(92)90059-s
|
[11] | Winter A, Jordan RW, Roth PH (1994) Biogeography of living coccolithophores in ocean waters. New York: Cambridge University Press.
|
[12] | Broerse T, Tyrrell T, Young J, Poulton A, Merico A (2003) The cause of bright waters in the Bering Sea in winter. Cont Shelf Res 23: 1579–1596. doi: 10.1016/j.csr.2003.07.001
|
[13] | Rhodes LL, Peake BM, Mackenzie AL, Marwick S (1995) Coccolithophores Gephyrocapsa oceanica and Emiliania huxleyi (Prymnesiophyceae = Haptophyceae) in New Zealand's coastal waters: characteristics of blooms and growth in laboratory culture. New Zeal J Mar Fresh 29: 345–357. doi: 10.1080/00288330.1995.9516669
|
[14] | Holligan PM, Viollier M, Harbour DS, Camus P, Champagne-Phillippe M (1983) Satellite and ship studies of coccolithophore production along a continental shelf edge. Nature 304: 339–342. doi: 10.1038/304339a0
|
[15] | Holligan PM, Fernandez E, Balch WM, Boyd P, Peter H (1993) A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic. Global Biogeochem Cycles 7: 879–900. doi: 10.1029/93gb01731
|
[16] | Groom SB, Holligan PM (1987) Remote sensing of coccolithophore blooms. Adv Sp Res 7: 73–78. doi: 10.1016/0273-1177(87)90166-9
|
[17] | Balch M, Holligan PM, Ackleson SG, Voss KJ (1991) Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine. Limnol Oceanogr 36: 629–643. doi: 10.4319/lo.1991.36.4.0629
|
[18] | Tyrrell T, Taylor AH (1996) A modelling study of Emiliania huxleyi in the NE Atlantic. J Mar Syst 9: 83–112. doi: 10.1016/0924-7963(96)00019-x
|
[19] | Paasche E (2002) A review of the coccolithophorid Emiliania huxleyi (Primnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 40: 503–529. doi: 10.2216/i0031-8884-40-6-503.1
|
[20] | Baumann EA, B?ckel B, Frenz M (2004) Coccolith contribution to South Atlantic carbonate sedimentation. Coccolithophores: from molecular processes to global impact. Springer. pp. 99–125.
|
[21] | Saavedra-Pellitero M, Flores JA, Baumann KH, Sierro FJ (2010) Coccolith distribution patterns in surface sediments of Equatorial and Southeastern Pacific Ocean. Geobios 43: 131–149. doi: 10.1016/j.geobios.2009.09.004
|
[22] | Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, et al. (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407: 364–367. doi: 10.1038/35030078
|
[23] | Ridgwell A, Schmidt DN, Turley C, Brownlee C, Maldonado MT, et al. (2009) From laboratory manipulations to Earth system models: scaling calcification impacts of ocean acidification. Biogeosciences 6: 2611–2623. doi: 10.5194/bg-6-2611-2009
|
[24] | Hoppe CJM, Langer G, Rost B (2011) Emiliania huxleyi shows identical responses to elevated pCO2 in TA and DIC manipulations. J Exp Mar Bio Ecol 406: 54–62. doi: 10.1016/j.jembe.2011.06.008
|
[25] | Benner I, Diner RE, Lefebvre SC, Li D, Komada T, et al.. (2013) Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2. Philo Trans R Soc B 368. doi: 10.1098/rstb.2013.0049.
|
[26] | Zondervan I (2007) The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores–A review. Deep Sea Res Part II 54: 521–537. doi: 10.1016/j.dsr2.2006.12.004
|
[27] | Shi D, Xu Y, Morel FMM (2009) Effects of the pH/pCO2 control method on medium chemistry and phytoplankton growth. Biogeosciences 6: 1199–1207. doi: 10.5194/bg-6-1199-2009
|
[28] | Bach LT, Riebesell U, Schulz KG (2011) Distinguishing between the effects of ocean acidification and ocean carbonation in the coccolithophore Emiliania huxleyi. Limnol Oceanogr 56: 2040–2050. doi: 10.4319/lo.2011.56.6.2040
|
[29] | Raven J, Crawfurd K (2012) Environmental controls on coccolithophore calcification. Mar Ecol Prog Ser 470: 137–166. doi: 10.3354/meps09993
|
[30] | Rokitta SD, Rost B (2012) Effects of CO2 and their modulation by light in the life-cycle stages of the coccolithophore Emiliania huxleyi. Limnol Oceanogr 57: 607–618. doi: 10.4319/lo.2012.57.2.0607
|
[31] | Langer G, Nehrke G, Probert I, Ly J, Ziveri P (2009) Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences 6: 2637–2646. doi: 10.5194/bg-6-2637-2009
|
[32] | LaRoche J, Rost B, Engel A (2010) Bioassay, batch culture and chemostat experimentation. Guide for best practices for ocean acidification research and data reporting. Publications Office of the European Union. pp. 81–94.
|
[33] | Brattstr?m H, H?is?ter T (1992) The Biological station 1892–1992: An historical review. Bergen: Univ. i Bergen.
|
[34] | Glé C, Del Amo Y, Sautour B, Laborde P, Chardy P (2008) Variability of nutrients and phytoplankton primary production in a shallow macrotidal coastal ecosystem (Arcachon Bay, France). Estuar Coast Shelf Sci 76: 642–656. doi: 10.1016/j.ecss.2007.07.043
|
[35] | Kester DR, Duedall IW, Connors DN, Pytkowicz RM (1967) Preparation of artificial seawater. Limnol Oceanogr 12: 176–179. doi: 10.4319/lo.1967.12.1.0176
|
[36] | Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) gran. Can J Microbiol 8: 229–239. doi: 10.1139/m62-029
|
[37] | Dickson AG, Afghan JD, Anderson GC (2003) Reference materials for oceanic CO2 analysis: A method for the certification of total alkalinity. Mar Chem 80: 185–197. doi: 10.1016/s0304-4203(02)00133-0
|
[38] | Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations [Internet]. ORNL/CDIAC-105. OakRidge (Tennessee): Carbon Dioxide Information Analysis Center, U.S. Department of Energy. Available: http://cdiac.ornl.gov/ftp/co2sys.
|
[39] | Sharp JH (1974) Improved analysis for particulate organic carbon and nitrogen from seawater. Limnol Oceanogr 19: 984–989. doi: 10.4319/lo.1974.19.6.0984
|
[40] | Cottingham KL, Brown BL, Lennon JT (2005) Knowing when to draw the line: designing more informative ecological experiments. Front Ecol Environ 3: 145–152 doi: [];10.1890/1540-9295(2005)003[0145:KWTDTL]2?.0.CO;2.
|
[41] | Zondervan I, Zeebe RE, Rost B, Riebesell U (2001) Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2. Global Biogeochem Cycles 15: 507–516. doi: 10.1029/2000gb001321
|
[42] | Langer G, Geisen M, Baumann KH, Kl?s J, Riebesell U, et al. (2006) Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochemistry, Geophys Geosystems 7: Q09006 doi: 10.1029/2005GC001227.
|
[43] | Krug S, Schulz KG, Riebesell U (2011) Effects of changes in carbonate chemistry speciation on Coccolithus braarudii: a discussion of coccolithophorid sensitivities. Biogeosciences 8: 771–777. doi: 10.5194/bg-8-771-2011
|
[44] | Lund JWG (1949) Studies on Asterionella: I. The origin and nature of the cells producing seasonal maxima. J Ecol 37: 389–419. doi: 10.2307/2256614
|
[45] | Talling JF (1955) The Relative Growth Rates of Three Plankton Diatoms in Relation to Underwater Radiation and Temperature. Ann Bot XIX: 329–341.
|
[46] | Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70: 1063–1085.
|
[47] | Conte MH, Thompson A, Lesley D, Harris RP (1998) Genetic and physiological influences on the alkenone/alkenoate versus growth temperature relationship in Emiliania huxleyi and Gephyrocapsa oceanica. Geochim Cosmochim Acta 62: 51–68. doi: 10.1016/s0016-7037(97)00327-x
|
[48] | Buitenhuis ET, Pangerc T, Franklin DJ, Le Quere C, Malin G (2008) Growth rates of six coccolithophorid strains as a function of temperature. Limnol Oceanogr 53: 1181–1185. doi: 10.4319/lo.2008.53.3.1181
|
[49] | Langer G, Gussone N, Nehrke G, Riebesell U, Eisenhauer A, et al. (2007) Calcium isotope fractionation during coccolith formation in Emiliania huxleyi: Independence of growth and calcification rate. Geochem Geophys Geosyst 8: Q05007 doi: 10.1029/2006GC001422.
|
[50] | Eynaud F, Giraudeau J, Pichon JJ, Pudsey CJ (1999) Sea-surface distribution of coccolithophores, diatoms, silicoflagellates and dinoflagellates in the South Atlantic Ocean during the late austral summer 1995. Deep Sea Res Part I 46: 451–482. doi: 10.1016/s0967-0637(98)00079-x
|
[51] | Hagino K, Bendif EM, Young JR, Kogame K, Probert I, et al. (2011) New evidence for morphological and genetic variation in the cosmopolitan coccolithophore Emiliania huxleyi (Prymnesiophyceae) from the COX1b-ATP4 genes. J Phycol 47: 1164–1176 doi: 10.1111/j.1529-8817.2011.01053.x.
|
[52] | Thomas MK, Kremer CT, Klausmeier C, Litchman E (2012) A global pattern of thermal adaptation in marine phytoplankton. Science 338: 1085–1088. doi: 10.1126/science.1224836
|
[53] | Tyrrell T, Merico A (2004) Emiliania huxleyi: bloom observations and the conditions that induce them. Coccolithophores: from molecular processes to global impact. Springer pp. 75–98.
|
[54] | Merico A, Tyrrell T, Lessard EJ, Oguz T, Stabeno PJ, et al. (2004) Modelling phytoplankton succession on the Bering Sea shelf: role of climate influences and trophic interactions in generating Emiliania huxleyi blooms 1997–2000. Deep Sea Res Part I 51: 1803–1826. doi: 10.1016/j.dsr.2004.07.003
|
[55] | Merico A, Tyrrell T, Brown CW, Groom SB, Miller PI (2003) Analysis of satellite imagery for Emiliania huxleyi blooms in the Bering Sea before 1997. Geophys Res Lett 30: 1337 doi: 10.1029/2002GL016648.
|
[56] | Toseland A, Daines SJ, Clark JR, Kirkham A, Strauss J, et al. (2013) The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat Clim Chang 3: 979–984. doi: 10.1038/nclimate1989
|
[57] | Rokitta SD, John U, Rost B (2012) Ocean acidification affects redox-balance and ion-homeostasis in the life-cycle stages of Emiliania huxleyi. PLoS One 7: e52212. doi: 10.1371/journal.pone.0052212
|
[58] | Bach LT, Mackinder LCM, Schulz KG, Wheeler G, Schroeder DC, et al. (2013) Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. New Phytol 199: 121–134. doi: 10.1111/nph.12225
|
[59] | Feng Y, Warner ME, Zhang Y, Sun J, Fu FX, et al. (2008) Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). Eur J Phycol 43: 87–98 doi: 10.1080/09670260701664674.
|
[60] | De Bodt C, Van Oostende N, Harlay J, Sabbe K, Chou L (2010) Individual and interacting effects of pCO2 and temperature on Emiliania huxleyi calcification: study of the calcite production, the coccolith morphology and the coccosphere size. Biogeosciences 7: 1401–1412. doi: 10.5194/bg-7-1401-2010
|