全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

The Treg-Specific Demethylated Region Stabilizes Foxp3 Expression Independently of NF-κB Signaling

DOI: 10.1371/journal.pone.0088318

Full-Text   Cite this paper   Add to My Lib

Abstract:

Regulatory T cells (Tregs) obtain immunosuppressive capacity by the upregulation of forkhead box protein 3 (Foxp3), and persistent expression of this transcription factor is required to maintain their immune regulatory function and ensure immune homeostasis. Stable Foxp3 expression is achieved through epigenetic modification of the Treg-specific demethylated region (TSDR), an evolutionarily conserved non-coding element within the Foxp3 gene locus. Here, we present molecular data suggesting that TSDR enhancer activity is restricted to T cells and cannot be induced in other immune cells such as macrophages or B cells. Since NF-κB signaling has been reported to be instrumental to induce Foxp3 expression during Treg development, we analyzed how NF-κB factors are involved in the molecular regulation of the TSDR. Unexpectedly, we neither observed transcriptional activity of a previously postulated NF-κB binding site within the TSDR nor did the entire TSDR show any transcriptional responsiveness to NF-κB activation at all. Finally, the NF-κB subunit c-Rel revealed to be dispensable for epigenetic imprinting of sustained Foxp3 expression by TSDR demethylation. In conclusion, we show that NF-κB signaling is not substantially involved in TSDR-mediated stabilization of Foxp3 expression in Tregs.

References

[1]  Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6: 345–352. doi: 10.1038/ni1178
[2]  Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, et al. (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22: 329–341. doi: 10.1016/j.immuni.2005.01.016
[3]  Gavin MA, Rasmussen JP, Fontenot JD, Vasta V, Manganiello VC, et al. (2007) Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445: 771–775. doi: 10.1038/nature05543
[4]  Williams LM, Rudensky AY (2007) Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol 8: 277–284. doi: 10.1038/ni1437
[5]  Leslie M (2011) Immunology. Regulatory T cells get their chance to shine. Science 332: 1020–1021. doi: 10.1126/science.332.6033.1020
[6]  Huehn J, Polansky JK, Hamann A (2009) Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat Rev Immunol 9: 83–89. doi: 10.1038/nri2474
[7]  Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe A, et al. (2008) DNA methylation controls Foxp3 gene expression. Eur J Immunol 38: 1654–1663. doi: 10.1002/eji.200838105
[8]  Kim HP, Leonard WJ (2007) CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med 204: 1543–1551. doi: 10.1016/j.cyto.2007.07.078
[9]  Floess S, Freyer J, Siewert C, Baron U, Olek S, et al. (2007) Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol 5: e38. doi: 10.1371/journal.pbio.0050038
[10]  Polansky JK, Schreiber L, Thelemann C, Ludwig L, Kruger M, et al. (2010) Methylation matters: binding of Ets-1 to the demethylated Foxp3 gene contributes to the stabilization of Foxp3 expression in regulatory T cells. J Mol Med (Berl) 88: 1029–1040. doi: 10.1007/s00109-010-0642-1
[11]  Mouly E, Chemin K, Nguyen HV, Chopin M, Mesnard L, et al. (2010) The Ets-1 transcription factor controls the development and function of natural regulatory T cells. J Exp Med 207: 2113–2125. doi: 10.1084/jem.20092153
[12]  Haiqi H, Yong Z, Yi L (2011) Transcriptional regulation of Foxp3 in regulatory T cells. Immunobiology 216: 678–685. doi: 10.1016/j.imbio.2010.11.002
[13]  Hayden MS, Ghosh S (2011) NF-kappaB in immunobiology. Cell Res 21: 223–244. doi: 10.1038/cr.2011.13
[14]  Hsieh CS (2009) Kickstarting Foxp3 with c-Rel. Immunity 31: 852–853. doi: 10.1016/j.immuni.2009.11.006
[15]  Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132: 344–362. doi: 10.1016/j.cell.2008.01.020
[16]  Schulze-Luehrmann J, Ghosh S (2006) Antigen-receptor signaling to nuclear factor kappa B. Immunity. 25: 701–715. doi: 10.1016/j.immuni.2006.10.010
[17]  Sun SC (2011) Non-canonical NF-kappaB signaling pathway. Cell Res 21: 71–85. doi: 10.1038/cr.2010.177
[18]  Schmidt-Supprian M, Tian J, Grant EP, Pasparakis M, Maehr R, et al. (2004) Differential dependence of CD4+CD25+ regulatory and natural killer-like T cells on signals leading to NF-kappaB activation. Proc Natl Acad Sci U S A 101: 4566–4571. doi: 10.1073/pnas.0400885101
[19]  Medoff BD, Sandall BP, Landry A, Nagahama K, Mizoguchi A, et al. (2009) Differential requirement for CARMA1 in agonist-selected T-cell development. Eur J Immunol 39: 78–84. doi: 10.1002/eji.200838734
[20]  Barnes MJ, Krebs P, Harris N, Eidenschenk C, Gonzalez-Quintial R, et al. (2009) Commitment to the regulatory T cell lineage requires CARMA1 in the thymus but not in the periphery. PLoS Biol 7: e51. doi: 10.1371/journal.pbio.1000051
[21]  Deenick EK, Elford AR, Pellegrini M, Hall H, Mak TW, et al. (2010) c-Rel but not NF-kappaB1 is important for T regulatory cell development. Eur J Immunol 40: 677–681. doi: 10.1002/eji.201040298
[22]  Molinero LL, Yang J, Gajewski T, Abraham C, Farrar MA, et al. (2009) CARMA1 controls an early checkpoint in the thymic development of FoxP3+ regulatory T cells. J Immunol 182: 6736–6743. doi: 10.4049/jimmunol.0900498
[23]  Gupta S, Manicassamy S, Vasu C, Kumar A, Shang W, et al.. (2008) Differential requirement of PKC-theta in the development and function of natural regulatory T cells. Mol Immunol.
[24]  Visekruna A, Huber M, Hellhund A, Bothur E, Reinhard K, et al. (2010) c-Rel is crucial for the induction of Foxp3+ regulatory CD4+ T cells but not T(H)17 cells. Eur J Immunol 40: 671–676. doi: 10.1002/eji.200940260
[25]  Long M, Park SG, Strickland I, Hayden MS, Ghosh S (2009) Nuclear factor-kappaB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity 31: 921–931. doi: 10.1016/j.immuni.2009.09.022
[26]  Vang KB, Yang J, Pagan AJ, Li LX, Wang J, et al. (2010) Cutting edge: CD28 and c-Rel-dependent pathways initiate regulatory T cell development. J Immunol 184: 4074–4077. doi: 10.4049/jimmunol.0903933
[27]  Guckel E, Frey S, Zaiss MM, Schett G, Ghosh S, et al. (2011) Cell-intrinsic NF-kappaB activation is critical for the development of natural regulatory T cells in mice. PLoS One 6: e20003. doi: 10.1371/journal.pone.0020003
[28]  Schuster M, Glauben R, Plaza-Sirvent C, Schreiber L, Annemann M, et al. (2012) IkappaB(NS) Protein Mediates Regulatory T Cell Development via Induction of the Foxp3 Transcription Factor. Immunity 37: 998–1008. doi: 10.1016/j.immuni.2012.08.023
[29]  Ruan Q, Kameswaran V, Tone Y, Li L, Liou HC, et al. (2009) Development of Foxp3+ regulatory t cells is driven by the c-Rel enhanceosome. Immunity 31: 932–940. doi: 10.1016/j.immuni.2009.10.006
[30]  Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, et al. (2010) Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463: 808–812. doi: 10.1038/nature08750
[31]  Grigoriadis G, Vasanthakumar A, Banerjee A, Grumont R, Overall S, et al. (2011) c-Rel Controls Multiple Discrete Steps in the Thymic Development of Foxp3 CD4 Regulatory T Cells. PLoS One 6: e26851. doi: 10.1371/journal.pone.0026851
[32]  Hori S (2010) c-Rel: a pioneer in directing regulatory T-cell lineage commitment? Eur J Immunol 40: 664–667. doi: 10.1002/eji.201040372
[33]  Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, et al. (1997) IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278: 860–866. doi: 10.1126/science.278.5339.860
[34]  DiDonato J, Mercurio F, Rosette C, Wu-Li J, Suyang H, et al. (1996) Mapping of the inducible IkappaB phosphorylation sites that signal its ubiquitination and degradation. Mol Cell Biol 16: 1295–1304.
[35]  Isomura I, Palmer S, Grumont RJ, Bunting K, Hoyne G, et al. (2009) c-Rel is required for the development of thymic Foxp3+ CD4 regulatory T cells. J Exp Med 206: 3001–3014. doi: 10.1084/jem.20091411
[36]  Rao S, Gerondakis S, Woltring D, Shannon MF (2003) c-Rel is required for chromatin remodeling across the IL-2 gene promoter. J Immunol 170: 3724–3731. doi: 10.4049/jimmunol.170.7.3724
[37]  Toker A, Huehn J (2011) To be or not to be a Treg cell: lineage decisions controlled by epigenetic mechanisms. Sci Signal 4: pe4. doi: 10.1126/scisignal.2001783
[38]  Toker A, Engelbert D, Garg G, Polansky JK, Floess S, et al.. (2013) Active Demethylation of the Foxp3 Locus Leads to the Generation of Stable Regulatory T Cells within the Thymus. J Immunol.
[39]  Baron U, Floess S, Wieczorek G, Baumann K, Grutzkau A, et al. (2007) DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3+ conventional T cells. Eur J Immunol 37: 2378–2389. doi: 10.1002/eji.200737594
[40]  Miyao T, Floess S, Setoguchi R, Luche H, Fehling HJ, et al. (2012) Plasticity of Foxp3+ T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity 36: 262–275. doi: 10.1016/j.immuni.2011.12.012
[41]  Ohkura N, Hamaguchi M, Morikawa H, Sugimura K, Tanaka A, et al. (2012) T cell receptor stimulation-induced epigenetic changes and foxp3 expression are independent and complementary events required for treg cell development. Immunity 37: 785–799. doi: 10.1016/j.immuni.2012.09.010
[42]  Josefowicz SZ, Wilson CB, Rudensky AY (2009) Cutting edge: TCR stimulation is sufficient for induction of Foxp3 expression in the absence of DNA methyltransferase 1. J Immunol 182: 6648–6652. doi: 10.4049/jimmunol.0803320
[43]  Zorn E, Nelson EA, Mohseni M, Porcheray F, Kim H, et al. (2006) IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 108: 1571–1579. doi: 10.1182/blood-2006-02-004747
[44]  Vivier E, da Silva AJ, Ackerly M, Levine H, Rudd CE, et al. (1993) Association of a 70-kDa tyrosine phosphoprotein with the CD16: zeta: gamma complex expressed in human natural killer cells. Eur J Immunol 23: 1872–1876. doi: 10.1002/eji.1830230821
[45]  Boyman O, Sprent J (2012) The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 12: 180–190. doi: 10.1038/nri3156
[46]  Yao Z, Kanno Y, Kerenyi M, Stephens G, Durant L, et al. (2007) Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 109: 4368–4375. doi: 10.1182/blood-2006-11-055756
[47]  Eckerstorfer P, Novy M, Burgstaller-Muehlbacher S, Paster W, Schiller HB, et al. (2010) Proximal human FOXP3 promoter transactivated by NF-kappaB and negatively controlled by feedback loop and SP3. Mol Immunol 47: 2094–2102. doi: 10.1016/j.molimm.2010.04.002
[48]  Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-kappaB signaling pathways. Nat Immunol 12: 695–708. doi: 10.1038/ni.2065
[49]  Tumang JR, Owyang A, Andjelic S, Jin Z, Hardy RR, et al. (1998) c-Rel is essential for B lymphocyte survival and cell cycle progression. Eur J Immunol 28: 4299–4312. doi: 10.1002/(sici)1521-4141(199812)28:12<4299::aid-immu4299>3.0.co;2-y
[50]  Ehlers M, Laule-Kilian K, Petter M, Aldrian CJ, Grueter B, et al. (2003) Morpholino antisense oligonucleotide-mediated gene knockdown during thymocyte development reveals role for Runx3 transcription factor in CD4 silencing during development of CD4?/CD8+ thymocytes. J Immunol 171: 3594–3604. doi: 10.4049/jimmunol.171.7.3594
[51]  Kim KJ, Kanellopoulos-Langevin C, Merwin RM, Sachs DH, Asofsky R (1979) Establishment and characterization of BALB/c lymphoma lines with B cell properties. J Immunol 122: 549–554.
[52]  Raschke WC, Baird S, Ralph P, Nakoinz I (1978) Functional macrophage cell lines transformed by Abelson leukemia virus. Cell 15: 261–267. doi: 10.1016/0092-8674(78)90101-0
[53]  Flory E, Kunz M, Scheller C, Jassoy C, Stauber R, et al. (2000) Influenza virus-induced NF-kappaB-dependent gene expression is mediated by overexpression of viral proteins and involves oxidative radicals and activation of IkappaB kinase. J Biol Chem 275: 8307–8314. doi: 10.1074/jbc.275.12.8307
[54]  Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675. doi: 10.1038/nmeth.2089

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133