The efficient induction of CD8 T cell immunity is dependent on the processing and presentation of antigen on MHC class I molecules by professional antigen presenting cells (APC). To develop an improved T cell vaccine for HIV we investigated whether fusing the ubiquitin gene to the N terminus of the HIV gag gene enhanced targeting to the proteasome resulting in better CD8 T cell responses. Human monocyte derived dendritic cells (moDC), transduced with adenovirus vectors carrying either ubiquitinated or non-ubiquitinated gag transgene constructs, were co-cultured with autologous na?ve T cells and T cell responses were measured after several weekly cycles of stimulation. Despite targeting of the ubiquitin gag transgene protein to the proteasome, ubiquitination did not increase CD8 T cell immune responses and in some cases diminished responses to gag peptides. There were no marked differences in cytokines produced from ubiquitinated and non-ubiquitinated gag stimulated cultures or in the expression of inhibitory molecules on expanded T cells. However, the ability of moDC transduced with ubiquitinated gag gene to upregulate co-stimulatory molecules was reduced, whilst no difference in moDC maturation was observed with a control ubiquitinated and non-ubiquitinated MART gene. Furthermore moDC transduced with ubiquitinated gag produced more IL-10 than transduction with unmodified gag. Thus failure of gag ubiquitination to enhance CD8 responses may be caused by suppression of moDC maturation. These results indicate that when designing a successful vaccine strategy to target a particular cell population, attention must also be given to the effect of the vaccine on APCs.
References
[1]
Verkoczy L, Kelsoe G, Moody MA, Haynes BF (2011) Role of immune mechanisms in induction of HIV-1 broadly neutralizing antibodies. Curr Opin Immunol 23: 383–390. doi: 10.1016/j.coi.2011.04.003
[2]
Klein F, Mouquet H, Dosenovic P, Scheid JF, Scharf L, et al. (2013) Antibodies in HIV-1 vaccine development and therapy. Science 341: 1199–1204. doi: 10.1126/science.1241144
[3]
Gamble LJ, Matthews QL (2011) Current progress in the development of a prophylactic vaccine for HIV-1. Drug Design, Development and Therapy 5: 9–26. doi: 10.2147/dddt.s6959
[4]
Elahi S, Dinges WL, Lejarcegui N, Laing KJ, Collier AC, et al. (2011) Protective HIV-specific CD8+ T cells evade Treg cell suppression. Nat Med 17: 989–995. doi: 10.1038/nm.2422
[5]
Kiepiela P, Ngumbela K, Thobakgale C, Ramduth D, Honeyborne I, et al. (2007) CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat Med 13: 46–53. doi: 10.1038/nm1520
[6]
Day CL, Kiepiela P, Leslie AJ, van der Stok M, Nair K, et al. (2007) Proliferative capacity of epitope-specific CD8 T-cell responses is inversely related to viral load in chronic human immunodeficiency virus type 1 infection. J Virol 81: 434–438. doi: 10.1128/jvi.01754-06
[7]
Hansen SG, Ford JC, Lewis MS, Ventura AB, Hughes CM, et al. (2011) Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 473: 523–527. doi: 10.1038/nature10003
[8]
Hansen SG, Vieville C, Whizin N, Coyne-Johnson L, Siess DC, et al. (2009) Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat Med 15: 293–299. doi: 10.1038/nm.1935
[9]
Goldwich A, Hahn SS, Schreiber S, Meier S, Kampgen E, et al. (2008) Targeting HIV-1 Gag into the defective ribosomal product pathway enhances MHC class I antigen presentation and CD8+ T cell activation. J Immunol 180: 372–382. doi: 10.4049/jimmunol.180.1.372
[10]
Yewdell JW (2006) Confronting complexity: real-world immunodominance in antiviral CD8+ T cell responses. Immunity 25: 533–543. doi: 10.1016/j.immuni.2006.09.005
[11]
Turnbull EL, Wong M, Wang S, Wei X, Jones NA, et al. (2009) Kinetics of expansion of epitope-specific T cell responses during primary HIV-1 infection. J Immunol 182: 7131–7145. doi: 10.4049/jimmunol.0803658
[12]
Goulder PJ, Altfeld MA, Rosenberg ES, Nguyen T, Tang Y, et al. (2001) Substantial differences in specificity of HIV-specific cytotoxic T cells in acute and chronic HIV infection. J Exp Med 193: 181–194. doi: 10.1084/jem.193.2.181
[13]
Wilson JD, Ogg GS, Allen RL, Goulder PJ, Kelleher A, et al. (1998) Oligoclonal expansions of CD8(+) T cells in chronic HIV infection are antigen specific. J Exp Med 188: 785–790. doi: 10.1084/jem.188.4.785
[14]
Janeway C (2005) Immunobiology : the immune system in health and disease. New York: Garland Science. xxiii, 823 p..
[15]
Lecker SH, Goldberg AL, Mitch WE (2006) Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 17: 1807–1819. doi: 10.1681/asn.2006010083
[16]
Kloetzel PM (2004) The proteasome and MHC class I antigen processing. Biochim Biophys Acta 1695: 225–233. doi: 10.1016/j.bbamcr.2004.10.004
[17]
Huang L, Marvin JM, Tatsis N, Eisenlohr LC (2011) Cutting Edge: Selective role of ubiquitin in MHC class I antigen presentation. J Immunol 186: 1904–1908. doi: 10.4049/jimmunol.1003411
[18]
Rouard H, Klonjkowski B, Marquet J, Lahet C, Mercier S, et al. (2003) Adenoviral transgene ubiquitination enhances mouse immunization and class I presentation by human dendritic cells. Hum Gene Ther 14: 1319–1332. doi: 10.1089/104303403322319408
[19]
Rodriguez F, Zhang J, Whitton JL (1997) DNA immunization: ubiquitination of a viral protein enhances cytotoxic T-lymphocyte induction and antiviral protection but abrogates antibody induction. J Virol 71: 8497–8503.
[20]
Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392: 245–252. doi: 10.1038/32588
[21]
Shortman K, Liu YJ (2002) Mouse and human dendritic cell subtypes. Nat Rev Immunol 2: 151–161. doi: 10.1038/nri746
[22]
Shortman K, Naik SH (2007) Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 7: 19–30. doi: 10.1038/nri1996
[23]
Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, et al. (2010) Development of monocytes, macrophages, and dendritic cells. Science 327: 656–661. doi: 10.1126/science.1178331
[24]
Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, et al. (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4: 328–332. doi: 10.1038/nm0398-328
[25]
Banchereau J, Palucka AK (2005) Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 5: 296–306. doi: 10.1038/nri1592
[26]
Lu W, Wu X, Lu Y, Guo W, Andrieu JM (2003) Therapeutic dendritic-cell vaccine for simian AIDS. Nat Med 9: 27–32. doi: 10.1038/nm806
[27]
Lu W, Arraes LC, Ferreira WT, Andrieu JM (2004) Therapeutic dendritic-cell vaccine for chronic HIV-1 infection. Nat Med 10: 1359–1365. doi: 10.1038/nm1147
[28]
Harari A, Bart PA, Stohr W, Tapia G, Garcia M, et al. (2008) An HIV-1 clade C DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional, and long-lasting T cell responses. J Exp Med 205: 63–77. doi: 10.1084/jem.20071331
[29]
Butterfield LH, Comin-Anduix B, Vujanovic L, Lee Y, Dissette VB, et al. (2008) Adenovirus MART-1-engineered autologous dendritic cell vaccine for metastatic melanoma. J Immunother 31: 294–309. doi: 10.1097/cji.0b013e31816a8910
[30]
Luo J, Deng ZL, Luo X, Tang N, Song WX, et al. (2007) A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc 2: 1236–1247. doi: 10.1038/nprot.2007.135
[31]
Bachy V, Hervouet C, Becker PD, Chorro L, Carlin LM, et al. (2013) Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays. Proc Natl Acad Sci U S A 110: 3041–3046. doi: 10.1073/pnas.1214449110
[32]
Benlahrech A, Harris J, Meiser A, Papagatsias T, Hornig J, et al. (2009) Adenovirus vector vaccination induces expansion of memory CD4 T cells with a mucosal homing phenotype that are readily susceptible to HIV-1. Proc Natl Acad Sci U S A 106: 19940–19945. doi: 10.1073/pnas.0907898106
[33]
Van Gulck ER, Vanham G, Heyndrickx L, Coppens S, Vereecken K, et al. (2008) Efficient in vitro expansion of human immunodeficiency virus (HIV)-specific T-cell responses by gag mRNA-electroporated dendritic cells from treated and untreated HIV type 1-infected individuals. J Virol 82: 3561–3573. doi: 10.1128/jvi.02080-07
[34]
Dalod M, Dupuis M, Deschemin JC, Sicard D, Salmon D, et al. (1999) Broad, intense anti-human immunodeficiency virus (HIV) ex vivo CD8(+) responses in HIV type 1-infected patients: comparison with anti-Epstein-Barr virus responses and changes during antiretroviral therapy. J Virol 73: 7108–7116.
[35]
Goonetilleke N, Moore S, Dally L, Winstone N, Cebere I, et al. (2006) Induction of multifunctional human immunodeficiency virus type 1 (HIV-1)-specific T cells capable of proliferation in healthy subjects by using a prime-boost regimen of DNA- and modified vaccinia virus Ankara-vectored vaccines expressing HIV-1 Gag coupled to CD8+ T-cell epitopes. J Virol 80: 4717–4728. doi: 10.1128/jvi.80.10.4717-4728.2006
[36]
Ecker DJ, Stadel JM, Butt TR, Marsh JA, Monia BP, et al. (1989) Increasing gene expression in yeast by fusion to ubiquitin. J Biol Chem 264: 7715–7719.
[37]
Rodriguez F, An LL, Harkins S, Zhang J, Yokoyama M, et al. (1998) DNA immunization with minigenes: low frequency of memory cytotoxic T lymphocytes and inefficient antiviral protection are rectified by ubiquitination. J Virol 72: 5174–5181.
[38]
Pittet MJ, Valmori D, Dunbar PR, Speiser DE, Lienard D, et al. (1999) High frequencies of naive Melan-A/MART-1-specific CD8(+) T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals. J Exp Med 190: 705–715. doi: 10.1084/jem.190.5.705
[39]
Appay V, Nixon DF, Donahoe SM, Gillespie GM, Dong T, et al. (2000) HIV-specific CD8(+) T cells produce antiviral cytokines but are impaired in cytolytic function. J Exp Med 192: 63–75. doi: 10.1084/jem.192.1.63
[40]
Tobery TW, Siliciano RF (1997) Targeting of HIV-1 antigens for rapid intracellular degradation enhances cytotoxic T lymphocyte (CTL) recognition and the induction of de novo CTL responses in vivo after immunization. J Exp Med 185: 909–920. doi: 10.1084/jem.185.5.909
[41]
Dobano C, Rogers WO, Gowda K, Doolan DL (2007) Targeting antigen to MHC Class I and Class II antigen presentation pathways for malaria DNA vaccines. Immunol Lett 111: 92–102. doi: 10.1016/j.imlet.2007.05.007
[42]
Fu TM, Mylin LM, Schell TD, Bacik I, Russ G, et al. (1998) An endoplasmic reticulum-targeting signal sequence enhances the immunogenicity of an immunorecessive simian virus 40 large T antigen cytotoxic T-lymphocyte epitope. J Virol 72: 1469–1481.
[43]
Vidalin O, Tanaka E, Spengler U, Trepo C, Inchauspe G (1999) Targeting of hepatitis C virus core protein for MHC I or MHC II presentation does not enhance induction of immune responses to DNA vaccination. DNA Cell Biol 18: 611–621. doi: 10.1089/104454999315024
[44]
Hahn S, Setz C, Wild J, Schubert U (2011) The PTAP sequence within the p6 domain of human immunodeficiency virus type 1 Gag regulates its ubiquitination and MHC class I antigen presentation. J Immunol 186: 5706–5718. doi: 10.4049/jimmunol.1003764
[45]
Greenwald RJ, Freeman GJ, Sharpe AH (2005) The B7 family revisited. Annu Rev Immunol 23: 515–548. doi: 10.1146/annurev.immunol.23.021704.115611
[46]
Baravalle G, Park H, McSweeney M, Ohmura-Hoshino M, Matsuki Y, et al. (2011) Ubiquitination of CD86 is a key mechanism in regulating antigen presentation by dendritic cells. J Immunol 187: 2966–2973. doi: 10.4049/jimmunol.1101643
[47]
Corcoran K, Jabbour M, Bhagwandin C, Deymier MJ, Theisen DL, et al. (2011) Ubiquitin-mediated regulation of CD86 protein expression by the ubiquitin ligase membrane-associated RING-CH-1 (MARCH1). J Biol Chem 286: 37168–37180. doi: 10.1074/jbc.m110.204040