During cell migration, cell-substrate binding is required for pseudopod anchoring to move the cell forward, yet the interactions with the substrate must be sufficiently weak to allow parts of the cell to de-adhere in a controlled manner during typical protrusion/retraction cycles. Mammalian cells actively control cell-substrate binding and respond to extracellular conditions with localized integrin-containing focal adhesions mediating mechanotransduction. We asked whether mechanotransduction also occurs during non-integrin mediated migration by examining the motion of the social amoeba Dictyostelium discoideum, which is thought to bind non-specifically to surfaces. We discovered that Dictyostelium cells are able to regulate forces generated by the actomyosin cortex to maintain optimal cell-surface contact area and adhesion on surfaces of various chemical composition and that individual cells migrate with similar speed and contact area on the different surfaces. In contrast, during collective migration, as observed in wound healing and metastasis, the balance between surface forces and protrusive forces is altered. We found that Dictyostelium collective migration dynamics are strongly affected when cells are plated on different surfaces. These results suggest that the presence of cell-cell contacts, which appear as Dictyostelium cells enter development, alter the mechanism cells use to migrate on surfaces of varying composition.
References
[1]
Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, et al. (2003) Cell Migration: Integrating Signals from Front to Back. Science 302: 1704–1709. doi: 10.1126/science.1092053
[2]
Friedl P, Wolf K (2010) Plasticity of cell migration: a multiscale tuning model. The Journal of Cell Biology 188: 11–19. doi: 10.1083/jcb.200909003
[3]
Wolfenson H, Lavelin I, Geiger B (2013) Dynamic Regulation of the Structure and Functions of Integrin Adhesions. Developmental Cell 24: 447–458. doi: 10.1016/j.devcel.2013.02.012
[4]
Lecuit T, Lenne PF, Munro E (2011) Force Generation, Transmission, and Integration during Cell and Tissue Morphogenesis. Annual Review of Cell and Developmental Biology 27: 157–184. doi: 10.1146/annurev-cellbio-100109-104027
[5]
Müller-Taubenberger A, Kortholt A, Eichinger L (2013) Simple system – substantial share: The use of Dictyostelium in cell biology and molecular medicine. European Journal of Cell Biology 92: 45–53. doi: 10.1016/j.ejcb.2012.10.003
[6]
Cornillon S, Pech E, Benghezal M, Ravanel K, Gaynor E, et al. (2000) Phg1p Is a Nine-transmembrane Protein Superfamily Member Involved in Dictyostelium Adhesion and Phagocytosis. Journal of Biological Chemistry 275: 34287–34292. doi: 10.1074/jbc.m006725200
[7]
Fey P, Stephens S, Titus MA, Chisholm RL (2002) SadA, a novel adhesion receptor in Dictyostelium. J Cell Biol 159: 1109–1119. doi: 10.1083/jcb.200206067
[8]
Cornillon S, Froquet R, Cosson P (2008) Involvement of Sib Proteins in the Regulation of Cellular Adhesion in Dictyostelium discoideum. Eukaryotic Cell 7: 1600–1605. doi: 10.1128/ec.00155-08
[9]
Cornillon S, Gebbie L, Benghezal M, Nair P, Keller S, et al. (2006) An adhesion molecule in free-living Dictyostelium amoebae with integrin beta features. EMBO reports 7: 617–621. doi: 10.1038/sj.embor.7400701
[10]
Eichinger L, Pachebat JA, Gl?ckner G, Rajandream MA, Sucgang R, et al. (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435: 43–57. doi: 10.1038/nature03481
[11]
Tsujioka M, Machesky LM, Cole SL, Yahata K, Inouye K (1999) A unique talin homologue with a villin headpiece-like domain is required for multicellular morphogenesis in Dictyostelium. Current Biology 9: 389–394. doi: 10.1016/s0960-9822(99)80169-9
[12]
Kreitmeier M, Gerisch G, Heizer C, Müller-Taubenberger A (1995) A talin homologue of Dictyostelium rapidly assembles at the leading edge of cells in response to chemoattractant. The Journal of Cell Biology 129: 179–188. doi: 10.1083/jcb.129.1.179
[13]
Niew?hner J, Weber I, Maniak M, Müller-Taubenberger A, Gerisch G (1997) Talin-null cells of Dictyostelium are strongly defective in adhesion to particle and substrate surfaces and slightly impaired in cytokinesis. The Journal of Cell Biology 138: 349–361. doi: 10.1083/jcb.138.2.349
[14]
Pitt GS, Milona N, Borleis J, Lin KC, Reed RR, et al. (1992) Structurally distinct and stage-specific adenylyl cyclase genes play different roles in Dictyostelium development. Cell 69: 305–315. doi: 10.1016/0092-8674(92)90411-5
[15]
Knecht DA, Shelden E (1995) Three-Dimensional Localization of Wild-Type and Myosin II Mutant Cells during Morphogenesis of Dictyostelium. Developmental Biology 170: 434–444. doi: 10.1006/dbio.1995.1227
[16]
McCann CP, Kriebel PW, Parent CA, Losert W (2010) Cell speed, persistence and information transmission during signal relay and collective migration. J Cell Sci 123: 1724–1731. doi: 10.1242/jcs.060137
[17]
Kriebel PW, Parent CA (2004) Adenylyl cyclase expression and regulation during the differentiation of Dictyostelium discoideum. IUBMB Life 56: 541–546. doi: 10.1080/15216540400013887
[18]
Pang KM, Lee E, Knecht DA (1998) Use of a fusion protein between GFP and an actin-binding domain to visualize transient filamentous-actin structures. Curr Biol 8: 405–408. doi: 10.1016/s0960-9822(98)70159-9
[19]
Buenemann M, Levine H, Rappel WJ, Sander LM (2010) The role of cell contraction and adhesion in Dictyostelium motility. Biophys J 99: 50–58. doi: 10.1016/j.bpj.2010.03.057
[20]
Decave E, Garrivier D, Brechet Y, Fourcade B, Bruckert F (2002) Shear flow-induced detachment kinetics of Dictyostelium discoideum cells from solid substrate. Biophys J 82: 2383–2395. doi: 10.1016/s0006-3495(02)75583-5
[21]
Loomis WF, Fuller D, Gutierrez E, Groisman A, Rappel W-J (2012) Innate Non-Specific Cell Substratum Adhesion. PLoS ONE 7: e42033. doi: 10.1371/journal.pone.0042033
[22]
Socol M, Lefrou C, Bruckert F, Delabouglise D, Weidenhaupt M (2010) Synchronization of Dictyostelium discoideum adhesion and spreading using electrostatic forces. Bioelectrochemistry 79: 198–210. doi: 10.1016/j.bioelechem.2010.04.003
[23]
Barr VA, Bunnell SC (2009) Interference reflection microscopy. Curr Protoc Cell Biol Chapter 4: Unit 4 23.
[24]
Murrell M, Pontani LL, Guevorkian K, Cuvelier D, Nassoy P, et al. (2011) Spreading dynamics of biomimetic actin cortices. Biophys J 100: 1400–1409. doi: 10.1016/j.bpj.2011.01.038
[25]
Reichl EM, Ren Y, Morphew MK, Delannoy M, Effler JC, et al. (2008) Interactions between myosin and actin crosslinkers control cytokinesis contractility dynamics and mechanics. Curr Biol 18: 471–480. doi: 10.1016/j.cub.2008.02.056
[26]
Cuvelier D, Thery M, Chu YS, Dufour S, Thiery JP, et al. (2007) The universal dynamics of cell spreading. Curr Biol 17: 694–699. doi: 10.1016/j.cub.2007.02.058
[27]
Robinson DN, Spudich JA (2004) Mechanics and regulation of cytokinesis. Curr Opin Cell Biol 16: 182–188. doi: 10.1016/j.ceb.2004.02.002
[28]
Parent CA, Blacklock BJ, Froehlich WM, Murphy DB, Devreotes PN (1998) G protein signaling events are activated at the leading edge of chemotactic cells. Cell 95: 81–91. doi: 10.1016/s0092-8674(00)81784-5
[29]
Schindl M, Wallraff E, Deubzer B, Witke W, Gerisch G, et al. (1995) Cell-substrate interactions and locomotion of Dictyostelium wild-type and mutants defective in three cytoskeletal proteins: a study using quantitative reflection interference contrast microscopy. Biophys J 68: 1177–1190. doi: 10.1016/s0006-3495(95)80294-8
[30]
Barnhart EL, Lee KC, Keren K, Mogilner A, Theriot JA (2011) An adhesion-dependent switch between mechanisms that determine motile cell shape. PLoS Biol 9: e1001059. doi: 10.1371/journal.pbio.1001059
[31]
Gardel ML, Schneider IC, Aratyn-Schaus Y, Waterman CM (2011) Mechanical integration of actin and adhesion dynamics in cell migration. Annu Rev Cell Dev Biol 26: 315–333. doi: 10.1146/annurev.cellbio.011209.122036
[32]
Uchida K, Yumura S (1999) Novel cellular tracks of migrating Dictyostelium cells. Eur J Cell Biol 78: 757–766. doi: 10.1016/s0171-9335(99)80044-2
[33]
Kriebel PW, Barr VA, Rericha EC, Zhang G, Parent CA (2008) Collective cell migration requires vesicular trafficking for chemoattractant delivery at the trailing edge. J Cell Biol 183: 949–961. doi: 10.1083/jcb.200808105
[34]
Jay PY, Pham PA, Wong SA, Elson EL (1995) A mechanical function of myosin II in cell motility. J Cell Sci 108 (Pt 1): 387–393.
[35]
Meili R, Alonso-Latorre B, del Alamo JC, Firtel RA, Lasheras JC (2010) Myosin II is essential for the spatiotemporal organization of traction forces during cell motility. Mol Biol Cell 21: 405–417. doi: 10.1091/mbc.e09-08-0703
[36]
Kessler DA, Levine H (1993) Pattern formation in Dictyostelium via the dynamics of cooperative biological entities. Phys Rev E 48: 4801–4804. doi: 10.1103/physreve.48.4801
[37]
Kriebel PW, Barr VA, Parent CA (2003) Adenylyl cyclase localization regulates streaming during chemotaxis. Cell 112: 549–560. doi: 10.1016/s0092-8674(03)00081-3
[38]
Jang W, Gomer RH (2008) Combining experiments and modelling to understand size regulation in Dictyostelium discoideum. J R Soc Interface 5 Suppl 1S49–58. doi: 10.1098/rsif.2008.0067.focus
[39]
Fey P, Dodson R, Basu S, Chisholm R (2013) One Stop Shop for Everything Dictyostelium: dictyBase and the Dicty Stock Center in 2012. In: Eichinger L, Rivero F, editors. Dictyostelium discoideum Protocols: Humana Press. 59–92.