全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Neural Circuit Interactions between the Dorsal Raphe Nucleus and the Lateral Hypothalamus: An Experimental and Computational Study

DOI: 10.1371/journal.pone.0088003

Full-Text   Cite this paper   Add to My Lib

Abstract:

Orexinergic/hypocretinergic (Ox) neurotransmission plays an important role in regulating sleep, as well as in anxiety and depression, for which the serotonergic (5-HT) system is also involved in. However, little is known regarding the direct and indirect interactions between 5-HT in the dorsal raphe nucleus (DRN) and Ox neurons in the lateral hypothalamus (LHA). In this study, we report the additional presence of 5-HT1BR, 5-HT2AR, 5-HT2CR and fast ligand-gated 5-HT3AR subtypes on the Ox neurons of transgenic Ox-enhanced green fluorescent protein (Ox-EGFP) and wild type C57Bl/6 mice using single and double immunofluorescence (IF) staining, respectively, and quantify the colocalization for each 5-HT receptor subtype. We further reveal the presence of 5-HT3AR and 5-HT1AR on GABAergic neurons in LHA. We also identify NMDAR1, OX1R and OX2R on Ox neurons, but none on adjacent GABAergic neurons. This suggests a one-way relationship between LHA’s GABAergic and Ox neurons, wherein GABAergic neurons exerts an inhibitory effect on Ox neurons under partial DRN’s 5-HT control. We also show that Ox axonal projections receive glutamatergic (PSD-95 immunopositive) and GABAergic (Gephyrin immunopositive) inputs in the DRN. We consider these and other available findings into our computational model to explore possible effects of neural circuit connection types and timescales on the DRN-LHA system’s dynamics. We find that if the connections from 5-HT to LHA’s GABAergic neurons are weakly excitatory or inhibitory, the network exhibits slow oscillations; not observed when the connection is strongly excitatory. Furthermore, if Ox directly excites 5-HT neurons at a fast timescale, phasic Ox activation can lead to an increase in 5-HT activity; no significant effect with slower timescale. Overall, our experimental and computational approaches provide insights towards a more complete understanding of the complex relationship between 5-HT in the DRN and Ox in the LHA.

References

[1]  Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437: 1257–1263. doi: 10.1038/nature04284
[2]  Palasz A, Lapray D, Peyron C, Rojczyk-Golebiewska E, Skowronek R, et al.. (2013) Dual orexin receptor antagonists - promising agents in the treatment of sleep disorders. Int J Neuropsychopharmacol: 1–12.
[3]  Mignot E (2001) A commentary on the neurobiology of the hypocretin/orexin system. Neuropsychopharmacology 25: S5–13. doi: 10.1016/s0893-133x(01)00316-5
[4]  Yamanaka A, Tabuchi S, Tsunematsu T, Fukazawa Y, Tominaga M (2010) Orexin directly excites orexin neurons through orexin 2 receptor. J Neurosci 30: 12642–12652. doi: 10.1523/jneurosci.2120-10.2010
[5]  Feng P, Vurbic D, Wu Z, Hu Y, Strohl KP (2008) Changes in brain orexin levels in a rat model of depression induced by neonatal administration of clomipramine. J Psychopharmacol 22: 784–791. doi: 10.1177/0269881106082899
[6]  Borgland SL, Labouebe G (2010) Orexin/hypocretin in psychiatric disorders: present state of knowledge and future potential. Neuropsychopharmacology 35: 353–354. doi: 10.1038/npp.2009.119
[7]  Brundin L, Bjorkqvist M, Petersen A, Traskman-Bendz L (2007) Reduced orexin levels in the cerebrospinal fluid of suicidal patients with major depressive disorder. Eur Neuropsychopharmacol 17: 573–579. doi: 10.1016/j.euroneuro.2007.01.005
[8]  Salomon RM, Ripley B, Kennedy JS, Johnson B, Schmidt D, et al. (2003) Diurnal variation of cerebrospinal fluid hypocretin-1 (Orexin-A) levels in control and depressed subjects. Biol Psychiatry 54: 96–104. doi: 10.1016/s0006-3223(02)01740-7
[9]  Lopez M, Tena-Sempere M, Dieguez C (2010) Cross-talk between orexins (hypocretins) and the neuroendocrine axes (hypothalamic-pituitary axes). Front Neuroendocrinol 31: 113–127. doi: 10.1016/j.yfrne.2009.07.001
[10]  Sakurai T, Mieda M, Tsujino N (2010) The orexin system: roles in sleep/wake regulation. Ann N Y Acad Sci 1200: 149–161. doi: 10.1111/j.1749-6632.2010.05513.x
[11]  de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, et al. (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95: 322–327. doi: 10.1073/pnas.95.1.322
[12]  Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, et al. (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92: 573–585. doi: 10.1016/s0092-8674(00)80949-6
[13]  Urbanska A, Sokolowska P, Woldan-Tambor A, Bieganska K, Brix B, et al. (2012) Orexins/hypocretins acting at Gi protein-coupled OX 2 receptors inhibit cyclic AMP synthesis in the primary neuronal cultures. J Mol Neurosci 46: 10–17. doi: 10.1007/s12031-011-9526-2
[14]  Sakurai T (2005) Reverse pharmacology of orexin: from an orphan GPCR to integrative physiology. Regul Pept 126: 3–10. doi: 10.1016/j.regpep.2004.08.006
[15]  Xu TR, Ward RJ, Pediani JD, Milligan G (2012) Intramolecular fluorescence resonance energy transfer (FRET) sensors of the orexin OX1 and OX2 receptors identify slow kinetics of agonist activation. J Biol Chem.
[16]  Scammell TE, Winrow CJ (2011) Orexin receptors: pharmacology and therapeutic opportunities. Annu Rev Pharmacol Toxicol 51: 243–266. doi: 10.1146/annurev-pharmtox-010510-100528
[17]  Lanni C, Govoni S, Lucchelli A, Boselli C (2009) Depression and antidepressants: molecular and cellular aspects. Cell Mol Life Sci 66: 2985–3008. doi: 10.1007/s00018-009-0055-x
[18]  Adrien J (2002) Neurobiological bases for the relation between sleep and depression. Sleep Med Rev 6: 341–351. doi: 10.1053/smrv.2001.0200
[19]  Wisor JP, Wurts SW, Hall FS, Lesch KP, Murphy DL, et al. (2003) Altered rapid eye movement sleep timing in serotonin transporter knockout mice. Neuroreport 14: 233–238. doi: 10.1097/00001756-200302100-00015
[20]  Catena-Dell'osso M, Marazziti D, Rotella F, Bellantuono C (2012) Emerging targets for the pharmacological treatment of depression: focus on melatonergic system. Curr Med Chem 19: 428–437. doi: 10.2174/092986712803414277
[21]  Grace KP, Liu H, Horner RL (2012) 5-HT1A Receptor-Responsive Pedunculopontine Tegmental Neurons Suppress REM Sleep and Respiratory Motor Activity. J Neurosci 32: 1622–1633. doi: 10.1523/jneurosci.5700-10.2012
[22]  de Carvalho TB, Suman M, Molina FD, Piatto VB, Maniglia JV (2012) Relationship of obstructive sleep apnea syndrome with the 5-HT2A receptor gene in Brazilian patients. Sleep Breath.
[23]  Artigas F (2013) Developments in the field of antidepressants, where do we go now? Eur Neuropsychopharmacol.
[24]  Artigas F (2013) Serotonin receptors involved in antidepressant effects. Pharmacol Ther 137: 119–131. doi: 10.1016/j.pharmthera.2012.09.006
[25]  Li Y, van den Pol AN (2005) Direct and indirect inhibition by catecholamines of hypocretin/orexin neurons. J Neurosci 25: 173–183. doi: 10.1523/jneurosci.4015-04.2005
[26]  Muraki Y, Yamanaka A, Tsujino N, Kilduff TS, Goto K, et al. (2004) Serotonergic regulation of the orexin/hypocretin neurons through the 5-HT1A receptor. J Neurosci 24: 7159–7166. doi: 10.1523/jneurosci.1027-04.2004
[27]  Yamanaka A, Muraki Y, Tsujino N, Goto K, Sakurai T (2003) Regulation of orexin neurons by the monoaminergic and cholinergic systems. Biochem Biophys Res Commun 303: 120–129. doi: 10.1016/s0006-291x(03)00299-7
[28]  Cooper MA, McIntyre KE, Huhman KL (2008) Activation of 5-HT1A autoreceptors in the dorsal raphe nucleus reduces the behavioral consequences of social defeat. Psychoneuroendocrinology 33: 1236–1247. doi: 10.1016/j.psyneuen.2008.06.009
[29]  Brown RE, Sergeeva O, Eriksson KS, Haas HL (2001) Orexin A excites serotonergic neurons in the dorsal raphe nucleus of the rat. Neuropharmacology 40: 457–459. doi: 10.1016/s0028-3908(00)00178-7
[30]  Brown RE, Sergeeva OA, Eriksson KS, Haas HL (2002) Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline). J Neurosci 22: 8850–8859.
[31]  Liu RJ, van den Pol AN, Aghajanian GK (2002) Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J Neurosci 22: 9453–9464.
[32]  Soffin EM, Gill CH, Brough SJ, Jerman JC, Davies CH (2004) Pharmacological characterisation of the orexin receptor subtype mediating postsynaptic excitation in the rat dorsal raphe nucleus. Neuropharmacology 46: 1168–1176. doi: 10.1016/j.neuropharm.2004.02.014
[33]  Matsuki T, Nomiyama M, Takahira H, Hirashima N, Kunita S, et al. (2009) Selective loss of GABA(B) receptors in orexin-producing neurons results in disrupted sleep/wakefulness architecture. Proc Natl Acad Sci U S A 106: 4459–4464. doi: 10.1073/pnas.0811126106
[34]  Harsing LG Jr, Prauda I, Barkoczy J, Matyus P, Juranyi Z (2004) A 5-HT7 heteroreceptor-mediated inhibition of [3H]serotonin release in raphe nuclei slices of the rat: evidence for a serotonergic-glutamatergic interaction. Neurochem Res 29: 1487–1497. doi: 10.1023/b:nere.0000029560.14262.39
[35]  Lee HS, Park SH, Song WC, Waterhouse BD (2005) Retrograde study of hypocretin-1 (orexin-A) projections to subdivisions of the dorsal raphe nucleus in the rat. Brain Res 1059: 35–45. doi: 10.1016/j.brainres.2005.08.016
[36]  Kumar S, Szymusiak R, Bashir T, Rai S, McGinty D, et al. (2007) Effects of serotonin on perifornical-lateral hypothalamic area neurons in rat. Eur J Neurosci 25: 201–212. doi: 10.1111/j.1460-9568.2006.05268.x
[37]  Postnova S, Voigt K, Braun HA (2009) A mathematical model of homeostatic regulation of sleep-wake cycles by hypocretin/orexin. J Biol Rhythms 24: 523–535. doi: 10.1177/0748730409346655
[38]  Williams KS, Behn CG (2011) Dynamic interactions between orexin and dynorphin may delay onset of functional orexin effects: a modeling study. J Biol Rhythms 26: 171–181. doi: 10.1177/0748730410395471
[39]  Patriarca M, Postnova S, Braun HA, Hernandez-Garcia E, Toral R (2012) Diversity and noise effects in a model of homeostatic regulation of the sleep-wake cycle. PLoS Comput Biol 8: e1002650. doi: 10.1371/journal.pcbi.1002650
[40]  Carter ME, Brill J, Bonnavion P, Huguenard JR, Huerta R, et al. (2012) Mechanism for Hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci U S A 109: E2635–2644. doi: 10.1073/pnas.1202526109
[41]  Diniz Behn CG, Kopell N, Brown EN, Mochizuki T, Scammell TE (2008) Delayed orexin signaling consolidates wakefulness and sleep: physiology and modeling. J Neurophysiol 99: 3090–3103. doi: 10.1152/jn.01243.2007
[42]  Rempe MJ, Best J, Terman D (2010) A mathematical model of the sleep/wake cycle. J Math Biol 60: 615–644. doi: 10.1007/s00285-009-0276-5
[43]  Kumar R, Bose A, Mallick BN (2012) A mathematical model towards understanding the mechanism of neuronal regulation of wake-NREMS-REMS states. PLoS One 7: e42059. doi: 10.1371/journal.pone.0042059
[44]  Omenetti A, Yang L, Gainetdinov RR, Guy CD, Choi SS, et al. (2011) Paracrine modulation of cholangiocyte serotonin synthesis orchestrates biliary remodeling in adults. Am J Physiol Gastrointest Liver Physiol 300: G303–315. doi: 10.1152/ajpgi.00368.2010
[45]  Arenkiel BR, Peca J, Davison IG, Feliciano C, Deisseroth K, et al. (2007) In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54: 205–218. doi: 10.1016/j.neuron.2007.03.005
[46]  Hu Z, Rudd JA, Fang M (2012) Development of the human corpus striatum and the presence of nNOS and 5-HT2A receptors. Anat Rec (Hoboken) 295: 127–131. doi: 10.1002/ar.21497
[47]  Johansson S, Povlsen GK, Edvinsson L (2012) Expressional changes in cerebrovascular receptors after experimental transient forebrain ischemia. PLoS One 7: e41852. doi: 10.1371/journal.pone.0041852
[48]  Wai MS, Lorke DE, Kwong WH, Zhang L, Yew DT (2011) Profiles of serotonin receptors in the developing human thalamus. Psychiatry Res 185: 238–242. doi: 10.1016/j.psychres.2010.05.003
[49]  Yeung LY, Kung HF, Yew DT (2010) Localization of 5-HT1A and 5-HT2A positive cells in the brainstems of control age-matched and Alzheimer individuals. Age (Dordr) 32: 483–495. doi: 10.1007/s11357-010-9152-x
[50]  Ren LQ, Wienecke J, Chen M, Moller M, Hultborn H, et al.. (2013) The time course of serotonin 2C receptor expression after spinal transection of rats: an immunohistochemical study. Neuroscience.
[51]  Weber M, Schmitt A, Wischmeyer E, Doring F (2008) Excitability of pontine startle processing neurones is regulated by the two-pore-domain K+ channel TASK-3 coupled to 5-HT2C receptors. Eur J Neurosci 28: 931–940. doi: 10.1111/j.1460-9568.2008.06400.x
[52]  Rivera HM, Santollo J, Nikonova LV, Eckel LA (2012) Estradiol increases the anorexia associated with increased 5-HT(2C) receptor activation in ovariectomized rats. Physiol Behav 105: 188–194. doi: 10.1016/j.physbeh.2011.08.018
[53]  Zinchuk V, Grossenbacher-Zinchuk O (2009) Recent advances in quantitative colocalization analysis: focus on neuroscience. Prog Histochem Cytochem 44: 125–172. doi: 10.1016/j.proghi.2009.03.001
[54]  Zinchuk V, Zinchuk O, Okada T (2007) Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: pushing pixels to explore biological phenomena. Acta Histochem Cytochem 40: 101–111. doi: 10.1267/ahc.07002
[55]  Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224: 213–232. doi: 10.1111/j.1365-2818.2006.01706.x
[56]  Adler J, Parmryd I (2010) Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Mander's overlap coefficient. Cytometry A 77: 733–742. doi: 10.1002/cyto.a.20896
[57]  Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, et al. (2004) Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J 86: 3993–4003. doi: 10.1529/biophysj.103.038422
[58]  Joshi A, Wong-Lin K, McGinnity TM, Prasad G (2011) A mathematical model to explore the interdependence between the serotonin and orexin/hypocretin systems. Conf Proc IEEE Eng Med Biol Soc 2011: 7270–7273. doi: 10.1109/iembs.2011.6091837
[59]  Tao R, Auerbach SB (2003) Influence of inhibitory and excitatory inputs on serotonin efflux differs in the dorsal and median raphe nuclei. Brain Res 961: 109–120. doi: 10.1016/s0006-8993(02)03851-9
[60]  Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12: 1–24. doi: 10.1016/s0006-3495(72)86068-5
[61]  Dayan P, Abbott L (2011) Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. The MIT Press.
[62]  Shriki O, Hansel D, Sompolinsky H (2003) Rate models for conductance-based cortical neuronal networks. Neural Comput 15: 1809–1841. doi: 10.1162/08997660360675053
[63]  Wong KF, Wang XJ (2006) A recurrent network mechanism of time integration in perceptual decisions. J Neurosci 26: 1314–1328. doi: 10.1523/jneurosci.3733-05.2006
[64]  Crawford LK, Craige CP, Beck SG (2010) Increased intrinsic excitability of lateral wing serotonin neurons of the dorsal raphe: a mechanism for selective activation in stress circuits. J Neurophysiol 103: 2652–2663. doi: 10.1152/jn.01132.2009
[65]  Karnani MM, Szabo G, Erdelyi F, Burdakov D (2013) Lateral hypothalamic GAD65 neurons are spontaneously firing and distinct from orexin- and melanin-concentrating hormone neurons. J Physiol 591: 933–953. doi: 10.1113/jphysiol.2012.243493
[66]  Kirby LG, Pernar L, Valentino RJ, Beck SG (2003) Distinguishing characteristics of serotonin and non-serotonin-containing cells in the dorsal raphe nucleus: electrophysiological and immunohistochemical studies. Neuroscience 116: 669–683. doi: 10.1016/s0306-4522(02)00584-5
[67]  Katayama J, Yakushiji T, Akaike N (1997) Characterization of the K+ current mediated by 5-HT1A receptor in the acutely dissociated rat dorsal raphe neurons. Brain Res 745: 283–292. doi: 10.1016/s0006-8993(96)01141-9
[68]  Williams JT, Colmers WF, Pan ZZ (1988) Voltage- and ligand-activated inwardly rectifying currents in dorsal raphe neurons in vitro. J Neurosci 8: 3499–3506.
[69]  Liu R, Jolas T, Aghajanian G (2000) Serotonin 5-HT(2) receptors activate local GABA inhibitory inputs to serotonergic neurons of the dorsal raphe nucleus. Brain Res 873: 34–45. doi: 10.1016/s0006-8993(00)02468-9
[70]  Lee MG, Hassani OK, Jones BE (2005) Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25: 6716–6720. doi: 10.1523/jneurosci.1887-05.2005
[71]  Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46: 787–798. doi: 10.1016/j.neuron.2005.04.035
[72]  Takahashi K, Lin JS, Sakai K (2008) Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Neuroscience 153: 860–870. doi: 10.1016/j.neuroscience.2008.02.058
[73]  Sakai K (2011) Sleep-waking discharge profiles of dorsal raphe nucleus neurons in mice. Neuroscience 197: 200–224. doi: 10.1016/j.neuroscience.2011.09.024
[74]  Ermentrout GB, Kopell N (1990) Oscillator death in systems of coupled neural oscillators. SIAM Journal on Applied Mathematics 50: 125–146. doi: 10.1137/0150009
[75]  Xie X, Crowder TL, Yamanaka A, Morairty SR, Lewinter RD, et al. (2006) GABA(B) receptor-mediated modulation of hypocretin/orexin neurones in mouse hypothalamus. J Physiol 574: 399–414. doi: 10.1113/jphysiol.2006.108266
[76]  Backberg M, Ultenius C, Fritschy JM, Meister B (2004) Cellular localization of GABA receptor alpha subunit immunoreactivity in the rat hypothalamus: relationship with neurones containing orexigenic or anorexigenic peptides. J Neuroendocrinol 16: 589–604. doi: 10.1111/j.1365-2826.2004.01207.x
[77]  Kokare DM, Patole AM, Carta A, Chopde CT, Subhedar NK (2006) GABA(A) receptors mediate orexin-A induced stimulation of food intake. Neuropharmacology 50: 16–24. doi: 10.1016/j.neuropharm.2005.07.019
[78]  Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, et al. (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18: 9996–10015.
[79]  Alberto CO, Hirasawa M (2010) AMPA receptor-mediated miniature EPSCs have heterogeneous time courses in orexin neurons. Biochem Biophys Res Commun 400: 707–712. doi: 10.1016/j.bbrc.2010.08.132
[80]  Doane DF, Lawson MA, Meade JR, Kotz CM, Beverly JL (2007) Orexin-induced feeding requires NMDA receptor activation in the perifornical region of the lateral hypothalamus. Am J Physiol Regul Integr Comp Physiol 293: R1022–1026. doi: 10.1152/ajpregu.00282.2007
[81]  Henny P, Jones BE (2006) Innervation of orexin/hypocretin neurons by GABAergic, glutamatergic or cholinergic basal forebrain terminals evidenced by immunostaining for presynaptic vesicular transporter and postsynaptic scaffolding proteins. J Comp Neurol 499: 645–661. doi: 10.1002/cne.21131
[82]  Li Y, Gao XB, Sakurai T, van den Pol AN (2002) Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron 36: 1169–1181. doi: 10.1016/s0896-6273(02)01132-7
[83]  Verge D, Daval G, Patey A, Gozlan H, el Mestikawy S, et al. (1985) Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT1A subtype. Eur J Pharmacol 113: 463–464. doi: 10.1016/0014-2999(85)90099-8
[84]  Ranade SP, Mainen ZF (2009) Transient firing of dorsal raphe neurons encodes diverse and specific sensory, motor, and reward events. J Neurophysiol 102: 3026–3037. doi: 10.1152/jn.00507.2009
[85]  Bromberg-Martin ES, Hikosaka O, Nakamura K (2010) Coding of task reward value in the dorsal raphe nucleus. J Neurosci 30: 6262–6272. doi: 10.1523/jneurosci.0015-10.2010
[86]  Wong-Lin K, Joshi A, Prasad G, McGinnity TM (2012) Network properties of a computational model of the dorsal raphe nucleus. Neural Netw 32: 15–25. doi: 10.1016/j.neunet.2012.02.009
[87]  Diaz-Cabiale Z, Parrado C, Narvaez M, Puigcerver A, Millon C, et al. (2011) Galanin receptor/Neuropeptide Y receptor interactions in the dorsal raphe nucleus of the rat. Neuropharmacology 61: 80–86. doi: 10.1016/j.neuropharm.2011.03.002
[88]  Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120 (Pt 4): 701–722. doi: 10.1093/brain/120.4.701
[89]  Ebrahim IO, Sharief MK, de Lacy S, Semra YK, Howard RS, et al. (2003) Hypocretin (orexin) deficiency in narcolepsy and primary hypersomnia. J Neurol Neurosurg Psychiatry 74: 127–130. doi: 10.1136/jnnp.74.1.127
[90]  Morikawa H, Manzoni OJ, Crabbe JC, Williams JT (2000) Regulation of central synaptic transmission by 5-HT(1B) auto- and heteroreceptors. Mol Pharmacol 58: 1271–1278.
[91]  Ishibashi H, Kuwano K, Takahama K (2000) Inhibition of the 5-HT(1A) receptor-mediated inwardly rectifying K(+) current by dextromethorphan in rat dorsal raphe neurones. Neuropharmacology 39: 2302–2308. doi: 10.1016/s0028-3908(00)00092-7
[92]  Gocho Y, Sakai A, Yanagawa Y, Suzuki H, Saitow F (2013) Electrophysiological and pharmacological properties of GABAergic cells in the dorsal raphe nucleus. J Physiol Sci 63: 147–154. doi: 10.1007/s12576-012-0250-7
[93]  Yamanaka A, Muraki Y, Ichiki K, Tsujino N, Kilduff TS, et al. (2006) Orexin neurons are directly and indirectly regulated by catecholamines in a complex manner. J Neurophysiol 96: 284–298. doi: 10.1152/jn.01361.2005

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133