[1] | Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437: 1257–1263. doi: 10.1038/nature04284
|
[2] | Palasz A, Lapray D, Peyron C, Rojczyk-Golebiewska E, Skowronek R, et al.. (2013) Dual orexin receptor antagonists - promising agents in the treatment of sleep disorders. Int J Neuropsychopharmacol: 1–12.
|
[3] | Mignot E (2001) A commentary on the neurobiology of the hypocretin/orexin system. Neuropsychopharmacology 25: S5–13. doi: 10.1016/s0893-133x(01)00316-5
|
[4] | Yamanaka A, Tabuchi S, Tsunematsu T, Fukazawa Y, Tominaga M (2010) Orexin directly excites orexin neurons through orexin 2 receptor. J Neurosci 30: 12642–12652. doi: 10.1523/jneurosci.2120-10.2010
|
[5] | Feng P, Vurbic D, Wu Z, Hu Y, Strohl KP (2008) Changes in brain orexin levels in a rat model of depression induced by neonatal administration of clomipramine. J Psychopharmacol 22: 784–791. doi: 10.1177/0269881106082899
|
[6] | Borgland SL, Labouebe G (2010) Orexin/hypocretin in psychiatric disorders: present state of knowledge and future potential. Neuropsychopharmacology 35: 353–354. doi: 10.1038/npp.2009.119
|
[7] | Brundin L, Bjorkqvist M, Petersen A, Traskman-Bendz L (2007) Reduced orexin levels in the cerebrospinal fluid of suicidal patients with major depressive disorder. Eur Neuropsychopharmacol 17: 573–579. doi: 10.1016/j.euroneuro.2007.01.005
|
[8] | Salomon RM, Ripley B, Kennedy JS, Johnson B, Schmidt D, et al. (2003) Diurnal variation of cerebrospinal fluid hypocretin-1 (Orexin-A) levels in control and depressed subjects. Biol Psychiatry 54: 96–104. doi: 10.1016/s0006-3223(02)01740-7
|
[9] | Lopez M, Tena-Sempere M, Dieguez C (2010) Cross-talk between orexins (hypocretins) and the neuroendocrine axes (hypothalamic-pituitary axes). Front Neuroendocrinol 31: 113–127. doi: 10.1016/j.yfrne.2009.07.001
|
[10] | Sakurai T, Mieda M, Tsujino N (2010) The orexin system: roles in sleep/wake regulation. Ann N Y Acad Sci 1200: 149–161. doi: 10.1111/j.1749-6632.2010.05513.x
|
[11] | de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, et al. (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95: 322–327. doi: 10.1073/pnas.95.1.322
|
[12] | Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, et al. (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92: 573–585. doi: 10.1016/s0092-8674(00)80949-6
|
[13] | Urbanska A, Sokolowska P, Woldan-Tambor A, Bieganska K, Brix B, et al. (2012) Orexins/hypocretins acting at Gi protein-coupled OX 2 receptors inhibit cyclic AMP synthesis in the primary neuronal cultures. J Mol Neurosci 46: 10–17. doi: 10.1007/s12031-011-9526-2
|
[14] | Sakurai T (2005) Reverse pharmacology of orexin: from an orphan GPCR to integrative physiology. Regul Pept 126: 3–10. doi: 10.1016/j.regpep.2004.08.006
|
[15] | Xu TR, Ward RJ, Pediani JD, Milligan G (2012) Intramolecular fluorescence resonance energy transfer (FRET) sensors of the orexin OX1 and OX2 receptors identify slow kinetics of agonist activation. J Biol Chem.
|
[16] | Scammell TE, Winrow CJ (2011) Orexin receptors: pharmacology and therapeutic opportunities. Annu Rev Pharmacol Toxicol 51: 243–266. doi: 10.1146/annurev-pharmtox-010510-100528
|
[17] | Lanni C, Govoni S, Lucchelli A, Boselli C (2009) Depression and antidepressants: molecular and cellular aspects. Cell Mol Life Sci 66: 2985–3008. doi: 10.1007/s00018-009-0055-x
|
[18] | Adrien J (2002) Neurobiological bases for the relation between sleep and depression. Sleep Med Rev 6: 341–351. doi: 10.1053/smrv.2001.0200
|
[19] | Wisor JP, Wurts SW, Hall FS, Lesch KP, Murphy DL, et al. (2003) Altered rapid eye movement sleep timing in serotonin transporter knockout mice. Neuroreport 14: 233–238. doi: 10.1097/00001756-200302100-00015
|
[20] | Catena-Dell'osso M, Marazziti D, Rotella F, Bellantuono C (2012) Emerging targets for the pharmacological treatment of depression: focus on melatonergic system. Curr Med Chem 19: 428–437. doi: 10.2174/092986712803414277
|
[21] | Grace KP, Liu H, Horner RL (2012) 5-HT1A Receptor-Responsive Pedunculopontine Tegmental Neurons Suppress REM Sleep and Respiratory Motor Activity. J Neurosci 32: 1622–1633. doi: 10.1523/jneurosci.5700-10.2012
|
[22] | de Carvalho TB, Suman M, Molina FD, Piatto VB, Maniglia JV (2012) Relationship of obstructive sleep apnea syndrome with the 5-HT2A receptor gene in Brazilian patients. Sleep Breath.
|
[23] | Artigas F (2013) Developments in the field of antidepressants, where do we go now? Eur Neuropsychopharmacol.
|
[24] | Artigas F (2013) Serotonin receptors involved in antidepressant effects. Pharmacol Ther 137: 119–131. doi: 10.1016/j.pharmthera.2012.09.006
|
[25] | Li Y, van den Pol AN (2005) Direct and indirect inhibition by catecholamines of hypocretin/orexin neurons. J Neurosci 25: 173–183. doi: 10.1523/jneurosci.4015-04.2005
|
[26] | Muraki Y, Yamanaka A, Tsujino N, Kilduff TS, Goto K, et al. (2004) Serotonergic regulation of the orexin/hypocretin neurons through the 5-HT1A receptor. J Neurosci 24: 7159–7166. doi: 10.1523/jneurosci.1027-04.2004
|
[27] | Yamanaka A, Muraki Y, Tsujino N, Goto K, Sakurai T (2003) Regulation of orexin neurons by the monoaminergic and cholinergic systems. Biochem Biophys Res Commun 303: 120–129. doi: 10.1016/s0006-291x(03)00299-7
|
[28] | Cooper MA, McIntyre KE, Huhman KL (2008) Activation of 5-HT1A autoreceptors in the dorsal raphe nucleus reduces the behavioral consequences of social defeat. Psychoneuroendocrinology 33: 1236–1247. doi: 10.1016/j.psyneuen.2008.06.009
|
[29] | Brown RE, Sergeeva O, Eriksson KS, Haas HL (2001) Orexin A excites serotonergic neurons in the dorsal raphe nucleus of the rat. Neuropharmacology 40: 457–459. doi: 10.1016/s0028-3908(00)00178-7
|
[30] | Brown RE, Sergeeva OA, Eriksson KS, Haas HL (2002) Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline). J Neurosci 22: 8850–8859.
|
[31] | Liu RJ, van den Pol AN, Aghajanian GK (2002) Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J Neurosci 22: 9453–9464.
|
[32] | Soffin EM, Gill CH, Brough SJ, Jerman JC, Davies CH (2004) Pharmacological characterisation of the orexin receptor subtype mediating postsynaptic excitation in the rat dorsal raphe nucleus. Neuropharmacology 46: 1168–1176. doi: 10.1016/j.neuropharm.2004.02.014
|
[33] | Matsuki T, Nomiyama M, Takahira H, Hirashima N, Kunita S, et al. (2009) Selective loss of GABA(B) receptors in orexin-producing neurons results in disrupted sleep/wakefulness architecture. Proc Natl Acad Sci U S A 106: 4459–4464. doi: 10.1073/pnas.0811126106
|
[34] | Harsing LG Jr, Prauda I, Barkoczy J, Matyus P, Juranyi Z (2004) A 5-HT7 heteroreceptor-mediated inhibition of [3H]serotonin release in raphe nuclei slices of the rat: evidence for a serotonergic-glutamatergic interaction. Neurochem Res 29: 1487–1497. doi: 10.1023/b:nere.0000029560.14262.39
|
[35] | Lee HS, Park SH, Song WC, Waterhouse BD (2005) Retrograde study of hypocretin-1 (orexin-A) projections to subdivisions of the dorsal raphe nucleus in the rat. Brain Res 1059: 35–45. doi: 10.1016/j.brainres.2005.08.016
|
[36] | Kumar S, Szymusiak R, Bashir T, Rai S, McGinty D, et al. (2007) Effects of serotonin on perifornical-lateral hypothalamic area neurons in rat. Eur J Neurosci 25: 201–212. doi: 10.1111/j.1460-9568.2006.05268.x
|
[37] | Postnova S, Voigt K, Braun HA (2009) A mathematical model of homeostatic regulation of sleep-wake cycles by hypocretin/orexin. J Biol Rhythms 24: 523–535. doi: 10.1177/0748730409346655
|
[38] | Williams KS, Behn CG (2011) Dynamic interactions between orexin and dynorphin may delay onset of functional orexin effects: a modeling study. J Biol Rhythms 26: 171–181. doi: 10.1177/0748730410395471
|
[39] | Patriarca M, Postnova S, Braun HA, Hernandez-Garcia E, Toral R (2012) Diversity and noise effects in a model of homeostatic regulation of the sleep-wake cycle. PLoS Comput Biol 8: e1002650. doi: 10.1371/journal.pcbi.1002650
|
[40] | Carter ME, Brill J, Bonnavion P, Huguenard JR, Huerta R, et al. (2012) Mechanism for Hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci U S A 109: E2635–2644. doi: 10.1073/pnas.1202526109
|
[41] | Diniz Behn CG, Kopell N, Brown EN, Mochizuki T, Scammell TE (2008) Delayed orexin signaling consolidates wakefulness and sleep: physiology and modeling. J Neurophysiol 99: 3090–3103. doi: 10.1152/jn.01243.2007
|
[42] | Rempe MJ, Best J, Terman D (2010) A mathematical model of the sleep/wake cycle. J Math Biol 60: 615–644. doi: 10.1007/s00285-009-0276-5
|
[43] | Kumar R, Bose A, Mallick BN (2012) A mathematical model towards understanding the mechanism of neuronal regulation of wake-NREMS-REMS states. PLoS One 7: e42059. doi: 10.1371/journal.pone.0042059
|
[44] | Omenetti A, Yang L, Gainetdinov RR, Guy CD, Choi SS, et al. (2011) Paracrine modulation of cholangiocyte serotonin synthesis orchestrates biliary remodeling in adults. Am J Physiol Gastrointest Liver Physiol 300: G303–315. doi: 10.1152/ajpgi.00368.2010
|
[45] | Arenkiel BR, Peca J, Davison IG, Feliciano C, Deisseroth K, et al. (2007) In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54: 205–218. doi: 10.1016/j.neuron.2007.03.005
|
[46] | Hu Z, Rudd JA, Fang M (2012) Development of the human corpus striatum and the presence of nNOS and 5-HT2A receptors. Anat Rec (Hoboken) 295: 127–131. doi: 10.1002/ar.21497
|
[47] | Johansson S, Povlsen GK, Edvinsson L (2012) Expressional changes in cerebrovascular receptors after experimental transient forebrain ischemia. PLoS One 7: e41852. doi: 10.1371/journal.pone.0041852
|
[48] | Wai MS, Lorke DE, Kwong WH, Zhang L, Yew DT (2011) Profiles of serotonin receptors in the developing human thalamus. Psychiatry Res 185: 238–242. doi: 10.1016/j.psychres.2010.05.003
|
[49] | Yeung LY, Kung HF, Yew DT (2010) Localization of 5-HT1A and 5-HT2A positive cells in the brainstems of control age-matched and Alzheimer individuals. Age (Dordr) 32: 483–495. doi: 10.1007/s11357-010-9152-x
|
[50] | Ren LQ, Wienecke J, Chen M, Moller M, Hultborn H, et al.. (2013) The time course of serotonin 2C receptor expression after spinal transection of rats: an immunohistochemical study. Neuroscience.
|
[51] | Weber M, Schmitt A, Wischmeyer E, Doring F (2008) Excitability of pontine startle processing neurones is regulated by the two-pore-domain K+ channel TASK-3 coupled to 5-HT2C receptors. Eur J Neurosci 28: 931–940. doi: 10.1111/j.1460-9568.2008.06400.x
|
[52] | Rivera HM, Santollo J, Nikonova LV, Eckel LA (2012) Estradiol increases the anorexia associated with increased 5-HT(2C) receptor activation in ovariectomized rats. Physiol Behav 105: 188–194. doi: 10.1016/j.physbeh.2011.08.018
|
[53] | Zinchuk V, Grossenbacher-Zinchuk O (2009) Recent advances in quantitative colocalization analysis: focus on neuroscience. Prog Histochem Cytochem 44: 125–172. doi: 10.1016/j.proghi.2009.03.001
|
[54] | Zinchuk V, Zinchuk O, Okada T (2007) Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: pushing pixels to explore biological phenomena. Acta Histochem Cytochem 40: 101–111. doi: 10.1267/ahc.07002
|
[55] | Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224: 213–232. doi: 10.1111/j.1365-2818.2006.01706.x
|
[56] | Adler J, Parmryd I (2010) Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Mander's overlap coefficient. Cytometry A 77: 733–742. doi: 10.1002/cyto.a.20896
|
[57] | Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, et al. (2004) Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J 86: 3993–4003. doi: 10.1529/biophysj.103.038422
|
[58] | Joshi A, Wong-Lin K, McGinnity TM, Prasad G (2011) A mathematical model to explore the interdependence between the serotonin and orexin/hypocretin systems. Conf Proc IEEE Eng Med Biol Soc 2011: 7270–7273. doi: 10.1109/iembs.2011.6091837
|
[59] | Tao R, Auerbach SB (2003) Influence of inhibitory and excitatory inputs on serotonin efflux differs in the dorsal and median raphe nuclei. Brain Res 961: 109–120. doi: 10.1016/s0006-8993(02)03851-9
|
[60] | Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12: 1–24. doi: 10.1016/s0006-3495(72)86068-5
|
[61] | Dayan P, Abbott L (2011) Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. The MIT Press.
|
[62] | Shriki O, Hansel D, Sompolinsky H (2003) Rate models for conductance-based cortical neuronal networks. Neural Comput 15: 1809–1841. doi: 10.1162/08997660360675053
|
[63] | Wong KF, Wang XJ (2006) A recurrent network mechanism of time integration in perceptual decisions. J Neurosci 26: 1314–1328. doi: 10.1523/jneurosci.3733-05.2006
|
[64] | Crawford LK, Craige CP, Beck SG (2010) Increased intrinsic excitability of lateral wing serotonin neurons of the dorsal raphe: a mechanism for selective activation in stress circuits. J Neurophysiol 103: 2652–2663. doi: 10.1152/jn.01132.2009
|
[65] | Karnani MM, Szabo G, Erdelyi F, Burdakov D (2013) Lateral hypothalamic GAD65 neurons are spontaneously firing and distinct from orexin- and melanin-concentrating hormone neurons. J Physiol 591: 933–953. doi: 10.1113/jphysiol.2012.243493
|
[66] | Kirby LG, Pernar L, Valentino RJ, Beck SG (2003) Distinguishing characteristics of serotonin and non-serotonin-containing cells in the dorsal raphe nucleus: electrophysiological and immunohistochemical studies. Neuroscience 116: 669–683. doi: 10.1016/s0306-4522(02)00584-5
|
[67] | Katayama J, Yakushiji T, Akaike N (1997) Characterization of the K+ current mediated by 5-HT1A receptor in the acutely dissociated rat dorsal raphe neurons. Brain Res 745: 283–292. doi: 10.1016/s0006-8993(96)01141-9
|
[68] | Williams JT, Colmers WF, Pan ZZ (1988) Voltage- and ligand-activated inwardly rectifying currents in dorsal raphe neurons in vitro. J Neurosci 8: 3499–3506.
|
[69] | Liu R, Jolas T, Aghajanian G (2000) Serotonin 5-HT(2) receptors activate local GABA inhibitory inputs to serotonergic neurons of the dorsal raphe nucleus. Brain Res 873: 34–45. doi: 10.1016/s0006-8993(00)02468-9
|
[70] | Lee MG, Hassani OK, Jones BE (2005) Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25: 6716–6720. doi: 10.1523/jneurosci.1887-05.2005
|
[71] | Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46: 787–798. doi: 10.1016/j.neuron.2005.04.035
|
[72] | Takahashi K, Lin JS, Sakai K (2008) Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Neuroscience 153: 860–870. doi: 10.1016/j.neuroscience.2008.02.058
|
[73] | Sakai K (2011) Sleep-waking discharge profiles of dorsal raphe nucleus neurons in mice. Neuroscience 197: 200–224. doi: 10.1016/j.neuroscience.2011.09.024
|
[74] | Ermentrout GB, Kopell N (1990) Oscillator death in systems of coupled neural oscillators. SIAM Journal on Applied Mathematics 50: 125–146. doi: 10.1137/0150009
|
[75] | Xie X, Crowder TL, Yamanaka A, Morairty SR, Lewinter RD, et al. (2006) GABA(B) receptor-mediated modulation of hypocretin/orexin neurones in mouse hypothalamus. J Physiol 574: 399–414. doi: 10.1113/jphysiol.2006.108266
|
[76] | Backberg M, Ultenius C, Fritschy JM, Meister B (2004) Cellular localization of GABA receptor alpha subunit immunoreactivity in the rat hypothalamus: relationship with neurones containing orexigenic or anorexigenic peptides. J Neuroendocrinol 16: 589–604. doi: 10.1111/j.1365-2826.2004.01207.x
|
[77] | Kokare DM, Patole AM, Carta A, Chopde CT, Subhedar NK (2006) GABA(A) receptors mediate orexin-A induced stimulation of food intake. Neuropharmacology 50: 16–24. doi: 10.1016/j.neuropharm.2005.07.019
|
[78] | Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, et al. (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18: 9996–10015.
|
[79] | Alberto CO, Hirasawa M (2010) AMPA receptor-mediated miniature EPSCs have heterogeneous time courses in orexin neurons. Biochem Biophys Res Commun 400: 707–712. doi: 10.1016/j.bbrc.2010.08.132
|
[80] | Doane DF, Lawson MA, Meade JR, Kotz CM, Beverly JL (2007) Orexin-induced feeding requires NMDA receptor activation in the perifornical region of the lateral hypothalamus. Am J Physiol Regul Integr Comp Physiol 293: R1022–1026. doi: 10.1152/ajpregu.00282.2007
|
[81] | Henny P, Jones BE (2006) Innervation of orexin/hypocretin neurons by GABAergic, glutamatergic or cholinergic basal forebrain terminals evidenced by immunostaining for presynaptic vesicular transporter and postsynaptic scaffolding proteins. J Comp Neurol 499: 645–661. doi: 10.1002/cne.21131
|
[82] | Li Y, Gao XB, Sakurai T, van den Pol AN (2002) Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron 36: 1169–1181. doi: 10.1016/s0896-6273(02)01132-7
|
[83] | Verge D, Daval G, Patey A, Gozlan H, el Mestikawy S, et al. (1985) Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT1A subtype. Eur J Pharmacol 113: 463–464. doi: 10.1016/0014-2999(85)90099-8
|
[84] | Ranade SP, Mainen ZF (2009) Transient firing of dorsal raphe neurons encodes diverse and specific sensory, motor, and reward events. J Neurophysiol 102: 3026–3037. doi: 10.1152/jn.00507.2009
|
[85] | Bromberg-Martin ES, Hikosaka O, Nakamura K (2010) Coding of task reward value in the dorsal raphe nucleus. J Neurosci 30: 6262–6272. doi: 10.1523/jneurosci.0015-10.2010
|
[86] | Wong-Lin K, Joshi A, Prasad G, McGinnity TM (2012) Network properties of a computational model of the dorsal raphe nucleus. Neural Netw 32: 15–25. doi: 10.1016/j.neunet.2012.02.009
|
[87] | Diaz-Cabiale Z, Parrado C, Narvaez M, Puigcerver A, Millon C, et al. (2011) Galanin receptor/Neuropeptide Y receptor interactions in the dorsal raphe nucleus of the rat. Neuropharmacology 61: 80–86. doi: 10.1016/j.neuropharm.2011.03.002
|
[88] | Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120 (Pt 4): 701–722. doi: 10.1093/brain/120.4.701
|
[89] | Ebrahim IO, Sharief MK, de Lacy S, Semra YK, Howard RS, et al. (2003) Hypocretin (orexin) deficiency in narcolepsy and primary hypersomnia. J Neurol Neurosurg Psychiatry 74: 127–130. doi: 10.1136/jnnp.74.1.127
|
[90] | Morikawa H, Manzoni OJ, Crabbe JC, Williams JT (2000) Regulation of central synaptic transmission by 5-HT(1B) auto- and heteroreceptors. Mol Pharmacol 58: 1271–1278.
|
[91] | Ishibashi H, Kuwano K, Takahama K (2000) Inhibition of the 5-HT(1A) receptor-mediated inwardly rectifying K(+) current by dextromethorphan in rat dorsal raphe neurones. Neuropharmacology 39: 2302–2308. doi: 10.1016/s0028-3908(00)00092-7
|
[92] | Gocho Y, Sakai A, Yanagawa Y, Suzuki H, Saitow F (2013) Electrophysiological and pharmacological properties of GABAergic cells in the dorsal raphe nucleus. J Physiol Sci 63: 147–154. doi: 10.1007/s12576-012-0250-7
|
[93] | Yamanaka A, Muraki Y, Ichiki K, Tsujino N, Kilduff TS, et al. (2006) Orexin neurons are directly and indirectly regulated by catecholamines in a complex manner. J Neurophysiol 96: 284–298. doi: 10.1152/jn.01361.2005
|