Recently, ETS-related gene (ERG) gene rearrangements, phosphatase tensin homologue (PTEN) deletions and EGFR family aberrations were characterized as potential biomarkers for prostate cancer (PCa) patient management. Although ERG gene rearrangement has been identified in approximately 50% of localized prostate cancers in western countries, the prognostic significance of this critical molecular event remains unknown in Chinese patients. Using fluorescence in situ hybridization (FISH) and immunohistochemistry, we evaluated ERG, PTEN and EGFR family aberrations in a cohort of 224 Chinese prostate cancer patients diagnosed in transurethral resection of the prostate (TUR-P). Overall, ERG rearrangement was detected in 23.2% (44/190) cases, of which 54.5% (24/44) showed deletion of the 5′end of ERG. PTEN deletion was identified in 10.8% (19/176) cases. Amplification of EGFR and HER2 genes was present in 1.1% (2/178) and 5.8% (10/173) of cases, respectively. Significant correlation between ERG rearrangement and PTEN deletion was identified in this cohort. EGFR and HER2 aberrations occurred more frequently in PCas without ERG rearrangement than in those with ERG rearrangement, although this did not reach statistical significance. Overall, ERG rearrangement was associated with pre-operative PSA values (P = 0.038) and cancer-related death (P = 0.02), but not with the age, clinical T stage, Gleason score, or Ki-67 labeling index (LI). Notably, multivariate analysis including known prognostic markers revealed ERG rearrangement was an independent prognostic factor (P = 0.022). Additionally, ERG rearrangement status was helpful to identify patients with poor prognosis from PCa group with low Ki-67 LI. In summary, we reported that ERG rearrangement was associated with cancer-related death in Chinese PCa patients. Determination of ERG rearrangement status allows stratification of PCa patients into different survival categories.
References
[1]
Shen MM, Abate-Shen C (2010) Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 24: 1967–2000. doi: 10.1101/gad.1965810
[2]
Lu-Yao GL, Albertsen PC, Moore DF, Shih W, Lin Y, et al. (2009) Outcomes of localized prostate cancer following conservative management. JAMA 302: 1202–1209. doi: 10.1001/jama.2009.1348
[3]
Albertsen PC, Hanley JA, Gleason DF, Barry MJ (1998) Competing risk analysis of men aged 55 to 74 years at diagnosis managed conservatively for clinically localized prostate cancer. JAMA 280: 975–980. doi: 10.1001/jama.280.11.975
[4]
Barry MJ, Albertsen PC, Bagshaw MA, Blute ML, Cox R, et al. (2001) Outcomes for men with clinically nonmetastatic prostate carcinoma managed with radical prostactectomy, external beam radiotherapy, or expectant management: a retrospective analysis. Cancer 91: 2302–2314. doi: 10.1002/1097-0142(20010615)91:12<2302::aid-cncr1262>3.0.co;2-p
[5]
Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, et al. (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310: 644–648. doi: 10.1126/science.1117679
[6]
Perner S, Demichelis F, Beroukhim R, Schmidt FH, Mosquera JM, et al. (2006) TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res 66: 8337–8341. doi: 10.1158/0008-5472.can-06-1482
[7]
Helgeson BE, Tomlins SA, Shah N, Laxman B, Cao Q, et al. (2008) Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancer. Cancer Res 68: 73–80. doi: 10.1158/0008-5472.can-07-5352
[8]
Kumar-Sinha C, Tomlins SA, Chinnaiyan AM (2008) Recurrent gene fusions in prostate cancer. Nat Rev Cancer 8: 497–511. doi: 10.1038/nrc2402
[9]
Nam RK, Sugar L, Yang W, Srivastava S, Klotz LH, et al. (2007) Expression of the TMPRSS2:ERG fusion gene predicts cancer recurrence after surgery for localised prostate cancer. Br J Cancer 97: 1690–1695. doi: 10.1016/s0084-4071(08)79087-0
[10]
Attard G, Clark J, Ambroisine L, Fisher G, Kovacs G, et al. (2008) Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene 27: 253–263. doi: 10.1038/sj.onc.1210640
[11]
Perner S (2010) [Dangerous liaisons in prostate cancer. Clinical and biological implications of recurrent gene fusions]. Pathologe 31 Suppl 2121–125.
[12]
Demichelis F, Fall K, Perner S, Andren O, Schmidt F, et al. (2007) TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene 26: 4596–4599. doi: 10.1038/sj.onc.1210237
[13]
Saramaki OR, Harjula AE, Martikainen PM, Vessella RL, Tammela TL, et al. (2008) TMPRSS2:ERG fusion identifies a subgroup of prostate cancers with a favorable prognosis. Clin Cancer Res 14: 3395–3400. doi: 10.1158/1078-0432.ccr-07-2051
[14]
Winnes M, Lissbrant E, Damber JE, Stenman G (2007) Molecular genetic analyses of the TMPRSS2-ERG and TMPRSS2-ETV1 gene fusions in 50 cases of prostate cancer. Oncol Rep 17: 1033–1036. doi: 10.3892/or.17.5.1033
[15]
Hermans KG, Boormans JL, Gasi D, van Leenders GJ, Jenster G, et al. (2009) Overexpression of prostate-specific TMPRSS2(exon 0)-ERG fusion transcripts corresponds with favorable prognosis of prostate cancer. Clin Cancer Res 15: 6398–6403. doi: 10.1158/1078-0432.ccr-09-1176
[16]
Boormans JL, Porkka K, Visakorpi T, Trapman J (2011) Confirmation of the association of TMPRSS2(exon 0):ERG expression and a favorable prognosis of primary prostate cancer. Eur Urol 60: 183–184. doi: 10.1016/j.eururo.2011.03.028
[17]
Kimura T, Furusato B, Miki J, Yamamoto T, Hayashi N, et al. (2012) Expression of ERG oncoprotein is associated with a less aggressive tumor phenotype in Japanese prostate cancer patients. Pathol Int 62: 742–748. doi: 10.1111/pin.12006
[18]
Pettersson A, Graff RE, Bauer SR, Pitt MJ, Lis RT, et al. (2012) The TMPRSS2:ERG rearrangement, ERG expression, and prostate cancer outcomes: a cohort study and meta-analysis. Cancer Epidemiol Biomarkers Prev 21: 1497–1509. doi: 10.1158/1055-9965.epi-12-0042
[19]
FitzGerald LM, Agalliu I, Johnson K, Miller MA, Kwon EM, et al. (2008) Association of TMPRSS2-ERG gene fusion with clinical characteristics and outcomes: results from a population-based study of prostate cancer. BMC Cancer 8: 230. doi: 10.1186/1471-2407-8-230
[20]
Gopalan A, Leversha MA, Satagopan JM, Zhou Q, Al-Ahmadie HA, et al. (2009) TMPRSS2-ERG gene fusion is not associated with outcome in patients treated by prostatectomy. Cancer Res 69: 1400–1406. doi: 10.1158/0008-5472.can-08-2467
[21]
Mao X, Yu Y, Boyd LK, Ren G, Lin D, et al. (2010) Distinct genomic alterations in prostate cancers in Chinese and Western populations suggest alternative pathways of prostate carcinogenesis. Cancer Res 70: 5207–5212. doi: 10.1158/0008-5472.can-09-4074
[22]
Miyagi Y, Sasaki T, Fujinami K, Sano J, Senga Y, et al. (2010) ETS family-associated gene fusions in Japanese prostate cancer: analysis of 194 radical prostatectomy samples. Mod Pathol 23: 1492–1498. doi: 10.1038/modpathol.2010.149
[23]
Di Cristofano A, Pandolfi PP (2000) The multiple roles of PTEN in tumor suppression. Cell 100: 387–390. doi: 10.1016/s0092-8674(00)80674-1
[24]
Bertram J, Peacock JW, Fazli L, Mui AL, Chung SW, et al. (2006) Loss of PTEN is associated with progression to androgen independence. Prostate 66: 895–902. doi: 10.1002/pros.20411
[25]
Han B, Mehra R, Lonigro RJ, Wang L, Suleman K, et al. (2009) Fluorescence in situ hybridization study shows association of PTEN deletion with ERG rearrangement during prostate cancer progression. Mod Pathol 22: 1083–1093. doi: 10.1038/modpathol.2009.69
[26]
Yoshimoto M, Joshua AM, Cunha IW, Coudry RA, Fonseca FP, et al. (2008) Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Mod Pathol 21: 1451–1460. doi: 10.1038/modpathol.2008.96
[27]
Di Lorenzo G, Tortora G, D’Armiento FP, De Rosa G, Staibano S, et al. (2002) Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin Cancer Res 8: 3438–3444.
[28]
Bubendorf L, Sauter G, Moch H, Schmid HP, Gasser TC, et al. (1996) Ki67 labelling index: an independent predictor of progression in prostate cancer treated by radical prostatectomy. J Pathol 178: 437–441. doi: 10.1002/(sici)1096-9896(199604)178:4<437::aid-path484>3.0.co;2-4
[29]
Bettencourt MC, Bauer JJ, Sesterhenn IA, Mostofi FK, McLeod DG, et al. (1996) Ki-67 expression is a prognostic marker of prostate cancer recurrence after radical prostatectomy. J Urol 156: 1064–1068. doi: 10.1016/s0022-5347(01)65703-3
[30]
Han B, Mehra R, Dhanasekaran SM, Yu J, Menon A, et al. (2008) A fluorescence in situ hybridization screen for E26 transformation-specific aberrations: identification of DDX5-ETV4 fusion protein in prostate cancer. Cancer Res 68: 7629–7637. doi: 10.1158/0008-5472.can-08-2014
[31]
Korshunov A, Sycheva R, Gorelyshev S, Golanov A (2005) Clinical utility of fluorescence in situ hybridization (FISH) in nonbrainstem glioblastomas of childhood. Mod Pathol 18: 1258–1263. doi: 10.1038/modpathol.3800415
[32]
Ren S, Peng Z, Mao JH, Yu Y, Yin C, et al. (2012) RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings. Cell Res 22: 806–821. doi: 10.1038/cr.2012.30
[33]
Lee K, Chae JY, Kwak C, Ku JH, Moon KC (2010) TMPRSS2-ERG gene fusion and clinicopathologic characteristics of Korean prostate cancer patients. Urology 76: 1268 e1267–1213.
[34]
Mosquera JM, Mehra R, Regan MM, Perner S, Genega EM, et al. (2009) Prevalence of TMPRSS2-ERG fusion prostate cancer among men undergoing prostate biopsy in the United States. Clin Cancer Res 15: 4706–4711. doi: 10.1158/1078-0432.ccr-08-2927
[35]
Magi-Galluzzi C, Tsusuki T, Elson P, Simmerman K, LaFargue C, et al. (2011) TMPRSS2-ERG gene fusion prevalence and class are significantly different in prostate cancer of Caucasian, African-American and Japanese patients. Prostate 71: 489–497. doi: 10.1002/pros.21265
[36]
Falzarano SM, Navas M, Simmerman K, Klein EA, Rubin MA, et al. (2010) ERG rearrangement is present in a subset of transition zone prostatic tumors. Mod Pathol 23: 1499–1506. doi: 10.1038/modpathol.2010.150
[37]
Guo CC, Zuo G, Cao D, Troncoso P, Czerniak BA (2009) Prostate cancer of transition zone origin lacks TMPRSS2-ERG gene fusion. Mod Pathol 22: 866–871. doi: 10.1038/modpathol.2009.57
[38]
Braun M, Scheble VJ, Menon R, Scharf G, Wilbertz T, et al. (2011) Relevance of cohort design for studying the frequency of the ERG rearrangement in prostate cancer. Histopathology 58: 1028–1036. doi: 10.1111/j.1365-2559.2011.03862.x
[39]
Ward JF, Blute ML, Slezak J, Bergstralh EJ, Zincke H (2003) The long-term clinical impact of biochemical recurrence of prostate cancer 5 or more years after radical prostatectomy. J Urol 170: 1872–1876. doi: 10.1097/01.ju.0000091876.13656.2e
[40]
Antonarakis ES, Keizman D, Zhang Z, Gurel B, Lotan TL, et al. (2012) An immunohistochemical signature comprising PTEN, MYC, and Ki67 predicts progression in prostate cancer patients receiving adjuvant docetaxel after prostatectomy. Cancer 118: 6063–6071. doi: 10.1002/cncr.27689
[41]
Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, et al. (2008) Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 10: 177–188. doi: 10.1593/neo.07822
[42]
Pathmanathan N, Balleine RL (2013) Ki67 and proliferation in breast cancer. J Clin Pathol 66: 512–516. doi: 10.1136/jclinpath-2012-201085
[43]
Perner S, Mosquera JM, Demichelis F, Hofer MD, Paris PL, et al. (2007) TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasion. Am J Surg Pathol 31: 882–888. doi: 10.1097/01.pas.0000213424.38503.aa
[44]
Klezovitch O, Risk M, Coleman I, Lucas JM, Null M, et al. (2008) A causal role for ERG in neoplastic transformation of prostate epithelium. Proc Natl Acad Sci U S A 105: 2105–2110. doi: 10.1073/pnas.0711711105
[45]
Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, et al. (2009) Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 41: 619–624. doi: 10.1038/ng.370
[46]
Sun C, Dobi A, Mohamed A, Li H, Thangapazham RL, et al. (2008) TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation. Oncogene 27: 5348–5353. doi: 10.1038/onc.2008.183
[47]
Cai C, Wang H, He HH, Chen S, He L, et al. (2013) ERG induces androgen receptor-mediated regulation of SOX9 in prostate cancer. J Clin Invest 123: 1109–1122. doi: 10.1172/jci66666
[48]
Zong Y, Xin L, Goldstein AS, Lawson DA, Teitell MA, et al. (2009) ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells. Proc Natl Acad Sci U S A 106: 12465–12470. doi: 10.1073/pnas.0905931106
[49]
Leshem O, Madar S, Kogan-Sakin I, Kamer I, Goldstein I, et al. (2011) TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model. PLoS One 6: e21650. doi: 10.1371/journal.pone.0021650
[50]
Schlomm T, Kirstein P, Iwers L, Daniel B, Steuber T, et al. (2007) Clinical significance of epidermal growth factor receptor protein overexpression and gene copy number gains in prostate cancer. Clin Cancer Res 13: 6579–6584. doi: 10.1158/1078-0432.ccr-07-1257
[51]
Baek KH, Hong ME, Jung YY, Lee CH, Lee TJ, et al. (2012) Correlation of AR, EGFR, and HER2 Expression Levels in Prostate Cancer: Immunohistochemical Analysis and Chromogenic In Situ Hybridization. Cancer Res Treat 44: 50–56. doi: 10.4143/crt.2012.44.1.50