全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

The Ecological and Geographic Context of Morphological and Genetic Divergence in an Understorey-Dwelling Bird

DOI: 10.1371/journal.pone.0085903

Full-Text   Cite this paper   Add to My Lib

Abstract:

Advances in understanding the process of species formation require an integrated perspective that includes the evaluation of spatial, ecological and genetic components. One approach is to focus on multiple stages of divergence within the same species. Species that comprise phenotypically different populations segregated in apparently distinct habitats, in which range is presently continuous but was putatively geographically isolated provide an interesting system to study the mechanisms of population divergence. Here, we attempt to elucidate the role of ecology and geography in explaining observed morphological and genetic variation in an understorey-dwelling bird endemic to southeastern Africa, where two subspecies are recognized according to phenotype and habitat affinity. We carried out a range-wide analysis of climatic requirements, morphological and genetic variation across southeast Africa to test the hypothesis that the extent of gene flow among populations of the brown scrub-robin are influenced by their distinct climatic niches. We recovered two distinct trends depending on whether our analyses were hierarchically structured at the subspecies or at the within subspecies level. Between subspecies we found pronounced morphological differentiation associated with strong reproductive isolation (no gene flow) between populations occupying divergent climatic niches characterized by changes in the temperature of the warmest and wettest month. In contrast, within subspecies, we recovered continuous morphological variation with extensive gene flow among populations inhabiting the temperate and sub-tropical forests of southern Africa, despite divergence along the climate axis that is mainly determined by minimum temperature and precipitation of the coldest months. Our results highlight the role of niche divergence as a diversifying force that can promote reproductive isolation in vertebrates.

References

[1]  Mayr E (1947) Ecological factors in speciation. Evolution 1: 263–288. doi: 10.2307/2405327
[2]  Dobzhansky T (1951) Genetics and the origin of species. 3rd edition. Columbia Univ. Press, New York.
[3]  Coyne JA, Orr HA (2004) Speciation. Sinauer and Associates, Sunderland, MA.
[4]  Price T (2008) Speciation in birds. Roberts and Company, Greenwood Village, CO.
[5]  Rundle HD, Nosil P (2005) Ecological speciation. Ecology Letters 8: 336–352. doi: 10.1111/j.1461-0248.2004.00715.x
[6]  Butlin RK, Galindo J, Grahame JW (2008) Sympatric, parapatric or allopatric: the most important way to classify speciation? Philosophical Transactions of the Royal Society of London B 363: 2997–3007. doi: 10.1098/rstb.2008.0076
[7]  Mallet J (2008) Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation. Philosophical Transactions if the Royal Society of London B 363: 2971–298. doi: 10.1098/rstb.2008.0081
[8]  Schemske DW (2000) Understanding the origin of species. Evolution 54: 1069–1073. doi: 10.1111/j.0014-3820.2000.tb00111.x
[9]  Turelli M, Barton NH, Coyne JA (2001) Theory and speciation. Trends in Ecology and Evolution 16: 330–343. doi: 10.1016/s0169-5347(01)02177-2
[10]  Kirkpatrick M, Ravigné V (2002) Speciation by natural and sexual selection: models and experiments. American Naturalist 158: S22–S35. doi: 10.1086/338370
[11]  Via S (2009) Natural selection in action during speciation. Proceedings of the National Academy of Sciences USA 106: 9939–9946. doi: 10.1073/pnas.0901397106
[12]  Wiens JJ (2004) Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58: 193–197. doi: 10.1111/j.0014-3820.2004.tb01586.x
[13]  Grant BR, Grant PR (1983) Fission and fusion in a population of Darwin's Finches: an example of the value of studying individuals in ecology. Oikos 41: 530–547. doi: 10.2307/3544112
[14]  Oatley TB (2005) Karoo scrub-robin Cercotrichas coryphaeus. In Roberts Birds of Southern Africa, Hockey PAR, Dean WRJ and Ryan PG, eds. VII edition, 942–943. The Trustees of the John Voelcker Bird Book Fund, Cape Town, South Africa.
[15]  Eeley HAC, Lawes MJ, Piper SE (1999) The influence of climate change on the distribution of indigenous forest in KwaZulu-Natal, South Africa. Journal of Biogeography 26: 595–617. doi: 10.1046/j.1365-2699.1999.00307.x
[16]  Hughes M, Hollingsworth PM (2008) Population genetic divergence corresponds with species- level biodiversity patterns in the large genus Begonia. Molecular Ecology 17: 2643–2651. doi: 10.1111/j.1365-294x.2008.03788.x
[17]  Lawes MJ (1990) The distribution of the samango monkey (Cercopithecus mitis erythrarchus Peters, 1852 and Cercopithecus mitis labiatus I. Geoffroy, 1843) and forest history in southern Africa. Journal of Biogeography 17: 669–680. doi: 10.2307/2845148
[18]  Lawes M, Eeley H, Findlay N, Forbes D (2007) Resilient forest faunal communities in South Africa: a legacy of palaeoclimatic change and extinction filtering? Journal of Biogeography 34: 1246–1264. doi: 10.1111/j.1365-2699.2007.01696.x
[19]  Hughes M, M?ller M, Bellstedt DU, Edwards TJ, De Villiers M (2005) Refugia, dispersal and divergence in a forest archipelago: a study of Streptocarpus in eastern South Africa. Molecular Ecology 14: 4415–4426. doi: 10.1111/j.1365-294x.2005.02756.x
[20]  Mittermeier RA, Robles-Gil P, Hoffmann M, Pilgrim JD, Brooks TM, et al. (2004) Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. Mexico City: CEMEX.
[21]  Kozak KH, Graham CH, Wiens JJ (2008) Integrating GIS-based environmental data into evolutionary biology. Trends in Ecology and Evolution. 23: 141–148. doi: 10.1016/j.tree.2008.02.001
[22]  Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62: 2868–2883. doi: 10.1111/j.1558-5646.2008.00482.x
[23]  McCormack JE, Zellmer AJ, Knowles LL (2010) Does niche divergence accompany allopatric divergence in Aphelocoma Jays as predicted under ecological speciation?: insights from tests with niche models. Evolution 64: 1231–1244. doi: 10.1111/j.1558-5646.2009.00900.x
[24]  Gaston K, Chown S, Evans K (2007) Ecogeographical rules: elements of a synthesis. Journal Biogeography 35: 483–500. doi: 10.1111/j.1365-2699.2007.01772.x
[25]  Olson VA, Davies RG, Orme CDL, Thomas GH, Meiri S, et al. (2009) Global biogeography and ecology of body size in birds. Ecology Letters 12: 249–259. doi: 10.1111/j.1461-0248.2009.01281.x
[26]  De Queiroz K (1998) The general lineage concept of species, species criteria, and the process of speciation: A conceptual unification and terminological recommendations. In: Howard SJ, Berlocher SH. eds. Endless forms: species and speciation. Oxford University Press, New York. 57–75.
[27]  Rosenblum EB (2006) Convergent evolution and divergent selection: lizards at the white sands ecotone. American Naturalist 167: 1–15. doi: 10.1086/498397
[28]  Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259. doi: 10.1016/j.ecolmodel.2005.03.026
[29]  Phillips SJ, Dudik M (2008) Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography 31: 161. doi: 10.1111/j.0906-7590.2008.5203.x
[30]  Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978. doi: 10.1002/joc.1276
[31]  R Development Core Team (2013) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
[32]  Fridolfsson AK, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. Journal of Avian Biology 30: 116–121. doi: 10.2307/3677252
[33]  Burnham KP, Anderson DR (2002) Model selection and mixed model inference: a practical information-theoretic approach. Springer, NY.
[34]  Eberhard, JR, Bermingham E (2004) Phylogeny and biogeography of the Amazona ochrocephala (Aves: Psittacidae) complex. Auk 121: 318–332. doi: 10.2307/4090396
[35]  Friesen VL, Congdon BC, Walsh HE, Birt TP (1997) Intron variation in Marbled Murrelets detected using analyses of single-stranded conformation polymorphisms. Molecular Ecology 6: 1047–1058. doi: 10.1046/j.1365-294x.1997.00277.x
[36]  Primmer CR, Borge T, Lindell J, Saetre GP (2002) Single-nucleotide polymorphism characterization in species with limited available sequence information: high nucleotide diversity revealed in the avian genome. Molecular Ecology 11: 603–612. doi: 10.1046/j.0962-1083.2001.01452.x
[37]  Backstr?m N, Fagerberg S, Ellegren H (2008) Genomics of natural bird populations: a gene-based set of reference markers evenly spread across the avian genome. Molecular Ecology 17: 964–980. doi: 10.1111/j.1365-294x.2007.03551.x
[38]  Fuchs J, Bowie RCK, Fjeldsa J, Pasquet E (2004) Phylogenetic relationships of the African Bush-shrikes and Helmet-shrikes (Passeriformes: Malaconotidae). Molecular Phylogentics and Evolution 33: 428–439. doi: 10.1016/j.ympev.2004.06.014
[39]  Goodwin GH (1997) Isolation of cDNAs encoding chicken homologues of the yeast SNF2 and Drosophila Brahma proteins. Gene 184: 27–32. doi: 10.1016/s0378-1119(96)00569-0
[40]  Stephens M, Smith N, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics 68: 978–989. doi: 10.1086/319501
[41]  Stephens M, Donnelly P (2003) A comparison of Bayesian methods for haplotype reconstruction from population genotype data. American Journal of Human Genetics 73: 1162–1169. doi: 10.1086/379378
[42]  Harrigan RJ, Mazza ME, Sorenson MD (2008) Computation vs. cloning: evaluation of two methods for haplotype determination. Molecular Ecology Resources 8: 1239–1248. doi: 10.1111/j.1755-0998.2008.02241.x
[43]  Garrick RC, Sunnucks P, Dyer RJ (2010) Nuclear gene phylogeography using PHASE: dealing with unresolved genotypes, lost alleles, and systematic bias in parameter estimation. BMC Evolutionary Biology 10: 1–17. doi: 10.1186/1471-2148-10-118
[44]  Pond SLK, Posada D, Gravenor MB, Woelk CH, Frost SDW (2007) Automated phylogenetic detection of recombination using a genetic algorithm. Molecular Biology and Evolution 23: 1891–1901. doi: 10.1093/molbev/msl051
[45]  Pond SLK, Frost SDW, Muse SV (2006) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21: 676–679. doi: 10.1093/bioinformatics/bti079
[46]  Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. doi: 10.1093/bioinformatics/btp187
[47]  Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theoretical Population Biology 7: 256–276. doi: 10.1016/0040-5809(75)90020-9
[48]  Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York, USA.
[49]  Hudson RR, Slatkin M, Maddison WP (1992) Estimation of levels of gene flow from DNA sequence data. Genetics 132: 583–589.
[50]  Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.
[51]  Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959.
[52]  Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources 9: 1322–1332. doi: 10.1111/j.1755-0998.2009.02591.x
[53]  Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.
[54]  Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.1: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50.
[55]  Wakeley J, Hey J (1998) Testing speciation models with DNA sequence data. 157–175. In B. Schierwater and R. DeSalle, eds, Molecular Approaches to Ecology and Evolution. Birkhauser-Verlag, Basel, Switzerland.
[56]  Hey J, Nielsen R (2007) Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proceedings of the National Academy of Sciences. USA 104: 2785–2790. doi: 10.1073/pnas.0611164104
[57]  Ribeiro ?M, Lloyd P, Feldheim KA, Bowie RCK (2012) Microgeographic socio-genetic structure of an African cooperative breeding passerine revealed: integrating behavioural and genetic data. Molecular Ecology 21: 662–672. doi: 10.1111/j.1365-294x.2011.05236.x
[58]  Ellegren H (2007) Molecular evolutionary genomics of birds. Cytogenetics and Genome Research 117: 120–130. doi: 10.1159/000103172
[59]  Grinnell J (1914) Barriers to distribution as regards birds and mammals. American Naturalist 48: 248–245. doi: 10.1086/279402
[60]  Gaston K (2003) The Structure and Dynamics of Geographic Ranges. Oxford University Press, Oxford.
[61]  Janzen DH (1967) Why mountain passes are higher in the tropics. American Naturalist 101: 233–249. doi: 10.1086/282487
[62]  Smith FA, Betancourt JL, Brown JH (1995) Evolution of body size in the woodrat over the past 25 000 years of climate change. Science 270: 2012–2014. doi: 10.1126/science.270.5244.2012
[63]  McNab BK (1979) The influence of body size on the energetics and distribution of fossorial burrowing mammals. Ecology 60: 1010–1021. doi: 10.2307/1936869
[64]  West-Eberhard MJ (1983) Sexual selection, social competition, and speciation. Quaternary Reviews Biology 58: 155–183. doi: 10.1086/413215
[65]  Duckworth RA, Badyaev AV (2007) Coupling of dispersal and aggression facilitates the rapid range expansion of a passerine bird. Proceedings of the National Academy of Sciences -USA 104: 15017–15022. doi: 10.1073/pnas.0706174104
[66]  Kekkonen J, Jensen H, Brommer JE (2012) Morphometric differentiation across House Sparrow Passer domesticuspopulations in Finland in comparison with the neutral expectation for divergence. Ibis 154: 846–857. doi: 10.1111/j.1474-919x.2012.01252.x
[67]  Slabbekoorn H, Smith TB (2002) Bird song, ecology and speciation. Philosophical Transactions of the Royal Society of London B 357: 493–503. doi: 10.1098/rstb.2001.1056
[68]  Toews DPL, Irwin DE (2008) Cryptic speciation in a Holarctic passerine revealed by genetic and bioacoustic analyses. Molecular Ecology 17: 2691–2705. doi: 10.1111/j.1365-294x.2008.03769.x
[69]  Oatley T, Arnott G (1998) Robins of Africa. Acorn Books and Russel Friedman Books, Halfway House. South Africa.
[70]  Poynton JC (1961) Biogeography of south-east Africa. Nature 189: 801–803. doi: 10.1038/189801a0
[71]  Van Wyk AE (1996) Biodiversity of the Maputaland Centre. In: Maesen LJG van der, Burgt XM van der, Medenbach de Rooy JM van ed(s). The biodiversity of African plants: proceedings XIVth AETFAT congress, 22–27 August 1994, Wageningen, The Netherlands. Dordrecht: Kluwer Academic 198–207.
[72]  Oatley TB (1989) Biogeography of forest avifauna in South Africa. In Biogeography of the mixed evergreen forest of southern Africa. CJ Geldenhuys ed., 48–59. Ecosystems Programm Occasional Report series No.45.FRD, Pretoria.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133