全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Growth Factor Priming Differentially Modulates Components of the Extracellular Matrix Proteome in Chondrocytes and Synovium-Derived Stem Cells

DOI: 10.1371/journal.pone.0088053

Full-Text   Cite this paper   Add to My Lib

Abstract:

To make progress in cartilage repair it is essential to optimize protocols for two-dimensional cell expansion. Chondrocytes and SDSCs are promising cell sources for cartilage repair. We previously observed that priming with a specific growth factor cocktail (1?ng/mL transforming growth factor-β1, 5?ng/mL basic fibroblast growth factor, and 10?ng/mL platelet-derived growth factor-BB) in two-dimensional culture, led to significant improvement in mechanical and biochemical properties of synovium-derived stem cell (SDSC)-seeded constructs. The current study assessed the effect of growth factor priming on the proteome of canine chondrocytes and SDSCs. In particular, growth factor priming modulated the proteins associated with the extracellular matrix in two-dimensional cultures of chondrocytes and SDSCs, inducing a partial dedifferentiation of chondrocytes (most proteins associated with cartilage were down-regulated in primed chondrocytes) and a partial differentiation of SDSCs (some collagen-related proteins were up-regulated in primed SDSCs). However, when chondrocytes and SDSCs were grown in pellet culture, growth factor-primed cells maintained their chondrogenic potential with respect to glycosaminoglycan and collagen production. In conclusion, the strength of the label-free proteomics technique is that it allows for the determination of changes in components of the extracellular matrix proteome in chondrocytes and SDSCs in response to growth factor priming, which could help in future tissue engineering strategies.

References

[1]  Steinert AF, Ghivizzani SC, Rethwilm A, Tuan RS, Evans CH, et al. (2007) Major biological obstacles for persistent cell-based regeneration of articular cartilage. Arthritis Res Ther 9: 213. doi: 10.1186/ar2195
[2]  Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, et al. (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331: 889–895. doi: 10.1056/nejm199410063311401
[3]  Sampat SR, O'Connell GD, Fong JV, Alegre-Aguaron E, Ateshian GA, et al. (2011) Growth factor priming of synovium-derived stem cells for cartilage tissue engineering. Tissue Eng Part A 17: 2259–2265. doi: 10.1089/ten.tea.2011.0155
[4]  Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9: 641–650. doi: 10.1002/jor.1100090504
[5]  De Bari C, Dell'Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44: 1928–1942. doi: 10.1002/1529-0131(200108)44:8<1928::aid-art331>3.0.co;2-p
[6]  Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, et al. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8: 315–317. doi: 10.1080/14653240600855905
[7]  Fan H, Hu Y, Zhang C, Li X, Lv R, et al. (2006) Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold. Biomaterials 27: 4573–4580. doi: 10.1016/j.biomaterials.2006.04.013
[8]  Schulz RM, Zscharnack M, Hanisch I, Geiling M, Hepp P, et al. (2008) Cartilage tissue engineering by collagen matrix associated bone marrow derived mesenchymal stem cells. Biomed Mater Eng 18: S55–70.
[9]  Ronziere MC, Perrier E, Mallein-Gerin F, Freyria AM (2010) Chondrogenic potential of bone marrow- and adipose tissue-derived adult human mesenchymal stem cells. Biomed Mater Eng 20: 145–158. doi: 10.1007/s10529-011-0653-1
[10]  Vater C, Kasten P, Stiehler M (2011) Culture media for the differentiation of mesenchymal stromal cells. Acta Biomater 7: 463–477. doi: 10.1016/j.actbio.2010.07.037
[11]  Indrawattana N, Chen G, Tadokoro M, Shann LH, Ohgushi H, et al. (2004) Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun 320: 914–919. doi: 10.1016/j.bbrc.2004.06.029
[12]  Fischer J, Dickhut A, Rickert M, Richter W (2010) Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis. Arthritis Rheum 62: 2696–2706. doi: 10.1002/art.27565
[13]  Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147. doi: 10.1126/science.284.5411.143
[14]  Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, et al. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7: 211–228. doi: 10.1089/107632701300062859
[15]  O'Driscoll SW, Recklies AD, Poole AR (1994) Chondrogenesis in periosteal explants. An organ culture model for in vitro study. J Bone Joint Surg Am 76: 1042–1051.
[16]  Jones BA, Pei M (2012) Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration. Tissue Eng Part B Rev 18: 301–311. doi: 10.1089/ten.teb.2012.0002
[17]  Sakaguchi Y, Sekiya I, Yagishita K, Muneta T (2005) Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52: 2521–2529. doi: 10.1002/art.21212
[18]  Pei M, He F, Kish VL, Vunjak-Novakovic G (2008) Engineering of functional cartilage tissue using stem cells from synovial lining: a preliminary study. Clin Orthop Relat Res 466: 1880–1889. doi: 10.1007/s11999-008-0316-2
[19]  Koga H, Muneta T, Ju YJ, Nagase T, Nimura A, et al. (2007) Synovial stem cells are regionally specified according to local microenvironments after implantation for cartilage regeneration. Stem Cells 25: 689–696. doi: 10.1634/stemcells.2006-0281
[20]  Pei M, He F, Boyce BM, Kish VL (2009) Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs. Osteoarthritis Cartilage 17: 714–722. doi: 10.1016/j.joca.2008.11.017
[21]  Shirasawa S, Sekiya I, Sakaguchi Y, Yagishita K, Ichinose S, et al. (2006) In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells. J Cell Biochem 97: 84–97. doi: 10.1002/jcb.20546
[22]  Sampat SR, Dermksian MV, Oungoulian SR, Winchester RJ, Bulinski JC, et al.. (2013) Applied osmotic loading for promoting development of engineered cartilage. J Biomech.
[23]  Hunziker EB (2001) Growth-factor-induced healing of partial-thickness defects in adult articular cartilage. Osteoarthritis Cartilage 9: 22–32. doi: 10.1053/joca.2000.0346
[24]  Mauck RL, Soltz MA, Wang CC, Wong DD, Chao PH, et al. (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng 122: 252–260. doi: 10.1115/1.429656
[25]  Ng KW, Lima EG, Bian L, O'Conor CJ, Jayabalan PS, et al. (2010) Passaged adult chondrocytes can form engineered cartilage with functional mechanical properties: a canine model. Tissue Eng Part A 16: 1041–1051. doi: 10.1089/ten.tea.2009.0581
[26]  Estes BT, Diekman BO, Guilak F (2008) Monolayer cell expansion conditions affect the chondrogenic potential of adipose-derived stem cells. Biotechnol Bioeng 99: 986–995. doi: 10.1002/bit.21662
[27]  Wagner EF, Karsenty G (2001) Genetic control of skeletal development. Curr Opin Genet Dev 11: 527–532. doi: 10.1016/s0959-437x(00)00228-8
[28]  Shintani N, Hunziker EB (2007) Chondrogenic differentiation of bovine synovium: bone morphogenetic proteins 2 and 7 and transforming growth factor beta1 induce the formation of different types of cartilaginous tissue. Arthritis Rheum 56: 1869–1879. doi: 10.1002/art.22701
[29]  Francioli SE, Martin I, Sie CP, Hagg R, Tommasini R, et al. (2007) Growth factors for clinical-scale expansion of human articular chondrocytes: relevance for automated bioreactor systems. Tissue Eng 13: 1227–1234. doi: 10.1089/ten.2006.0342
[30]  Barbero A, Ploegert S, Heberer M, Martin I (2003) Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes. Arthritis Rheum 48: 1315–1325. doi: 10.1002/art.10950
[31]  Wang D, Park JS, Chu JS, Krakowski A, Luo K, et al. (2004) Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor beta1 stimulation. J Biol Chem 279: 43725–43734. doi: 10.1074/jbc.m407368200
[32]  Foster LJ, Zeemann PA, Li C, Mann M, Jensen ON, et al. (2005) Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation. Stem Cells 23: 1367–1377. doi: 10.1634/stemcells.2004-0372
[33]  Oswald ES, Brown LM, Bulinski JC, Hung CT (2011) Label-free protein profiling of adipose-derived human stem cells under hyperosmotic treatment. J Proteome Res 10: 3050–3059. doi: 10.1021/pr200030v
[34]  Bian L, Fong JV, Lima EG, Stoker AM, Ateshian GA, et al. (2010) Dynamic mechanical loading enhances functional properties of tissue-engineered cartilage using mature canine chondrocytes. Tissue Eng Part A 16: 1781–1790. doi: 10.1089/ten.tea.2009.0482
[35]  Cyr DD, Lucas JE, Thompson JW, Patel K, Clark PJ, et al. (2011) Characterization of serum proteins associated with IL28B genotype among patients with chronic hepatitis C. PLoS One. 6: e21854. doi: 10.1371/journal.pone.0021854
[36]  Ibrahim Y, Danielson WF, Prior D, Baker E, Kurulugama R, et al. Performance of a New Sensitive LC-IMS-QTOF Platform for Proteomics Measurements; 2011 June 5–9, 2011; Denver, CO. American Society for Mass Spectrometry.
[37]  Dai H, Meyer M, Stepaniants S, Ziman M, Stoughton R (2002) Use of hybridization kinetics for differentiating specific from non-specific binding to oligonucleotide microarrays. Nucleic Acids Res 30: e86. doi: 10.1093/nar/gnf085
[38]  Weng L, Dai H, Zhan Y, He Y, Stepaniants SB, et al. (2006) Rosetta error model for gene expression analysis. Bioinformatics 22: 1111–1121. doi: 10.1093/bioinformatics/btl045
[39]  Levin Y, Hradetzky E, Bahn S (2011) Quantification of proteins using data-independent analysis (MSE) in simple andcomplex samples: a systematic evaluation. Proteomics 11: 3273–3287. doi: 10.1002/pmic.201000661
[40]  Reidel B, Thompson JW, Farsiu S, Moseley MA, Skiba NP, et al.. (2011) Proteomic profiling of a layered tissue reveals unique glycolytic specializations of photoreceptor cells. Mol Cell Proteomics 10: M110 002469.
[41]  Chien KY, Blackburn K, Liu HC, Goshe MB (2012) Proteomic and phosphoproteomic analysis of chicken embryo fibroblasts infected with cell culture-attenuated and vaccine strains of Marek's disease virus. J Proteome Res 11: 5663–5677. doi: 10.1021/pr300471y
[42]  Matzke MM, Waters KM, Metz TO, Jacobs JM, Sims AC, et al. (2011) Improved quality control processing of peptide-centric LC-MS proteomics data. Bioinformatics 27: 2866–2872. doi: 10.1093/bioinformatics/btr479
[43]  Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 40: D71–75. doi: 10.1093/nar/gkr981
[44]  Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, et al. (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4: P3. doi: 10.1186/gb-2003-4-5-p3
[45]  Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27–30. doi: 10.1093/nar/28.1.27
[46]  Kelly TA, Ng KW, Wang CC, Ateshian GA, Hung CT (2006) Spatial and temporal development of chondrocyte-seeded agarose constructs in free-swelling and dynamically loaded cultures. J Biomech 39: 1489–1497. doi: 10.1016/j.jbiomech.2005.03.031
[47]  Farndale RW, Sayers CA, Barrett AJ (1982) A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect Tissue Res 9: 247–248. doi: 10.3109/03008208209160269
[48]  Stegemann H, Stalder K (1967) Determination of hydroxyproline. Clin Chim Acta 18: 267–273. doi: 10.1016/0009-8981(67)90167-2
[49]  Hollander AP, Heathfield TF, Webber C, Iwata Y, Bourne R, et al. (1994) Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J Clin Invest 93: 1722–1732. doi: 10.1172/jci117156
[50]  Saha S, Kirkham J, Wood D, Curran S, Yang X (2010) Comparative study of the chondrogenic potential of human bone marrow stromal cells, neonatal chondrocytes and adult chondrocytes. Biochem Biophys Res Commun 401: 333–338. doi: 10.1016/j.bbrc.2010.09.042
[51]  Chiang H, Hsieh CH, Lin YH, Lin S, Tsai-Wu JJ, et al. (2011) Differences between chondrocytes and bone marrow-derived chondrogenic cells. Tissue Eng Part A 17: 2919–2929. doi: 10.1089/ten.tea.2010.0732
[52]  Cheifetz S, Bellon T, Cales C, Vera S, Bernabeu C, et al. (1992) Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem 267: 19027–19030.
[53]  Arufe MC, De la Fuente A, Fuentes-Boquete I, De Toro FJ, Blanco FJ (2009) Differentiation of synovial CD-105(+) human mesenchymal stem cells into chondrocyte-like cells through spheroid formation. J Cell Biochem 108: 145–155. doi: 10.1002/jcb.22238
[54]  Delorme B, Charbord P (2007) Culture and characterization of human bone marrow mesenchymal stem cells. Methods Mol Med 140: 67–81. doi: 10.1007/978-1-59745-443-8_4
[55]  Bianchi G, Banfi A, Mastrogiacomo M, Notaro R, Luzzatto L, et al. (2003) Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Exp Cell Res 287: 98–105. doi: 10.1016/s0014-4827(03)00138-1
[56]  Solchaga LA, Penick K, Porter JD, Goldberg VM, Caplan AI, et al. (2005) FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J Cell Physiol 203: 398–409. doi: 10.1002/jcp.20238
[57]  Colter DC, Sekiya I, Prockop DJ (2001) Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci U S A 98: 7841–7845. doi: 10.1073/pnas.141221698
[58]  Li G, Zhang XA, Wang H, Wang X, Meng CL, et al. (2009) Comparative proteomic analysis of mesenchymal stem cells derived from human bone marrow, umbilical cord, and placenta: implication in the migration. Proteomics 9: 20–30. doi: 10.1002/pmic.200701195
[59]  Park HW, Shin JS, Kim CW (2007) Proteome of mesenchymal stem cells. Proteomics 7: 2881–2894. doi: 10.1002/pmic.200700089
[60]  Diaz-Romero J, Gaillard JP, Grogan SP, Nesic D, Trub T, et al. (2005) Immunophenotypic analysis of human articular chondrocytes: changes in surface markers associated with cell expansion in monolayer culture. J Cell Physiol 202: 731–742. doi: 10.1002/jcp.20164
[61]  Stewart K, Monk P, Walsh S, Jefferiss CM, Letchford J, et al. (2003) STRO-1, HOP-26 (CD63), CD49a and SB-10 (CD166) as markers of primitive human marrow stromal cells and their more differentiated progeny: a comparative investigation in vitro. Cell Tissue Res 313: 281–290. doi: 10.1007/s00441-003-0762-9
[62]  DeLany JP, Floyd ZE, Zvonic S, Smith A, Gravois A, et al. (2005) Proteomic analysis of primary cultures of human adipose-derived stem cells: modulation by Adipogenesis. Mol Cell Proteomics 4: 731–740. doi: 10.1074/mcp.m400198-mcp200
[63]  Geng Y, McQuillan D, Roughley PJ (2006) SLRP interaction can protect collagen fibrils from cleavage by collagenases. Matrix Biol 25: 484–491. doi: 10.1016/j.matbio.2006.08.259
[64]  Rosenberg K, Olsson H, Morgelin M, Heinegard D (1998) Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen. J Biol Chem 273: 20397–20403. doi: 10.1074/jbc.273.32.20397
[65]  Chen FH, Thomas AO, Hecht JT, Goldring MB, Lawler J (2005) Cartilage oligomeric matrix protein/thrombospondin 5 supports chondrocyte attachment through interaction with integrins. J Biol Chem 280: 32655–32661. doi: 10.1074/jbc.m504778200
[66]  Juang YM, Lee CY, Hsu WY, Lin CT, Lai CC, et al. (2010) Proteomic analysis of chondrocytes exposed to pressure. Biomed Chromatogr 24: 1273–1282. doi: 10.1002/bmc.1436
[67]  Wilson R, Lees JF, Bulleid NJ (1998) Protein disulfide isomerase acts as a molecular chaperone during the assembly of procollagen. J Biol Chem 273: 9637–9643. doi: 10.1074/jbc.273.16.9637
[68]  Blanco FJ, Lopez-Armada MJ, Maneiro E (2004) Mitochondrial dysfunction in osteoarthritis. Mitochondrion 4: 715–728. doi: 10.1016/j.mito.2004.07.022
[69]  Sumegi B, Gyocsi L, Alkonyi I (1980) Interaction between the pyruvate dehydrogenase complex and citrate synthase. Biochim Biophys Acta 616: 158–166. doi: 10.1016/0005-2744(80)90134-5
[70]  Lambrecht S, Verbruggen G, Elewaut D, Deforce D (2009) Differential expression of alphaB-crystallin and evidence of its role as a mediator of matrix gene expression in osteoarthritis. Arthritis Rheum 60: 179–188. doi: 10.1002/art.24152

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133