Thin, filamentous, non-heterocystous, benthic cyanobacteria (Subsection III) from some marine, lacustrine and thermal environments aggregate into macroscopic cones and conical stromatolites. We investigate the uptake and storage of inorganic carbon by cone-forming cyanobacteria from Yellowstone National Park using high-resolution stable isotope mapping of labeled carbon (H13CO3?) and immunoassays. Observations and incubation experiments in actively photosynthesizing enrichment cultures and field samples reveal the presence of abundant cyanophycin granules in the active growth layer of cones. These ultrastructurally heterogeneous granules rapidly accumulate newly fixed carbon and store 18% of the total particulate labeled carbon after 120 mins of incubation. The intracellular distribution of labeled carbon during the incubation experiment demonstrates an unexpectedly large contribution of PEP carboxylase to carbon fixation, and a large flow of carbon and nitrogen toward cyanophycin in thin filamentous, non-heterocystous cyanobacteria. This pattern does not occur in obvious response to a changing N or C status. Instead, it may suggest an unusual interplay between the regulation of carbon concentration mechanisms and accumulation of photorespiratory products that facilitates uptake of inorganic C and reduces photorespiration in the dense, surface-attached communities of cyanobacteria from Subsection III.
References
[1]
Portis AR, Parry MA (2007) Discoveries in Rubisco (Ribulose 1, 5-bisphosphate carboxylase/oxygenase): a historical perspective. Photosyn Res 94: 121–43. doi: 10.1007/s11120-007-9225-6
[2]
Cannon GC, Heinhorst S, Bradburne CE, Shively JM (2001) Carboxysome genomics: a status report. Funct Plant Biol 29: 179–182.
[3]
Badger MR, Hanson DT, Price GD (2002) Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct Plant Biol 29: 407–416.
[4]
Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54: 609–622. doi: 10.1093/jxb/erg076
[5]
Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59: 1441–1461. doi: 10.1093/jxb/erm112
[6]
Simon RD (1971) Cyanophycin granules from the blue-Green algae Anabaena cylindrica: a reserve material consisting of copolymers of aspartic acid and arginine. Proc Natl Acad Sci USA 68: 265–267. doi: 10.1073/pnas.68.2.265
[7]
Simon RD (1973) Measurement of cyanophycin granule polypeptide content in the blue-green alga Anabaena cylindrica. J Bacteriol 114: 1213–1216. doi: 10.1007/bf00425009
[8]
Simon RD, Weathers P (1976) Determination of the structure of the novel polypeptide containing aspartic acid and arginine which is found in cyanobacteria. Biochim Biophys Acta 420: 165–176. doi: 10.1016/0005-2795(76)90355-x
[9]
Allen MM, Hutchison F, Weathers PJ (1980) Cyanophycin granule polypeptide formation and degradation in the cyanobacterium Aphanocapsa 6308. J Bacteriol 141: 687–693.
[10]
Allen MM, Hawley AM (1983) Protein degradation and synthesis of cyanophycin granule polypeptide in Aphanocapsa sp. J Bacteriol 154: 1480–1484.
[11]
Allen MM (1984) Cyanobacterial cell inclusions. Ann Rev Microbiol 38: 1–25. doi: 10.1146/annurev.mi.38.100184.000245
[12]
Obst M, Steinbuchel A (2006) Cyanophycin–an ideal bacterial nitrogen storage material with unique chemical properties. Shively JM (ed): Inclusions in Prokaryotes, Volume 1, Microbiology Monographs. Springer–Verlag Berlin Heidelberg. 168–187.
[13]
Finzi-Hart JA, Pett-Ridge J, Weber PK, Popa R, Fallon SJ, et al. (2009) Fixation and fate of C and N in the cyanobacterium Trichodesmium using nanometer-scale secondary ion mass spectrometry. Proc Natl Acad Sci USA 106: 6345–6350. doi: 10.1073/pnas.0810547106
[14]
Li H, Sherman DM, Bao S, Sherman LA (2001) Pattern of cyanophycin accumulation in nitrogen-fixing and non-nitrogen-fixing cyanobacteria: Arch Microb. 176: 9–18. doi: 10.1007/s002030100281
[15]
Castenholz RW (2001) Cyanobacteria. In: Bergey’s Manual of Systematic Bacteriology, 2nd ed (eds Boone DR, Castenholz RW, Garrity GM) The Archaea and the deeply branching and phototrophic bacteria (Springer Verlag, NY), 473–599.
[16]
Paerl HW, Prufert LE, Ambrose WW (1991) Contemporaneous N2 fixation and oxygenic photosynthesis in the nonheterocystous mat-forming cyanobacterium Lyngbya aestuarii: Appl Environ Microbiol. 57: 3086–3092.
[17]
Congestri R, Sangiorgi VC, Albertano P (2003) Cytomorphology and distribution of periphytic cyanobacteria in one Italian waste water treatment plant: Algol Stud. 109: 185–195. doi: 10.1127/1864-1318/2003/0109-0185
[18]
Jones AC, Monroe EA, Podell S, Hess WR, Klages S, et al. (2011) Genomic insights into the physiology and ecology of the marine filamentous cyanobacterium Lyngbya majuscula. Proc Natl Acad Sci USA 108: 8815–8820. doi: 10.1073/pnas.1101137108
[19]
Bosak T, Liang BQ, Wu TD, Templer S, Evans A, et al. (2012) Cyanobacterial composition and activity in modern conical microbialites. Geobiology 10: 384–401. doi: 10.1111/j.1472-4669.2012.00334.x
[20]
Walter MR, Bauld J, Brock TD (1976) Microbiology and morphogenesis of columnar stromatolites (Conophyton, Vacerrilla) from hot springs in Yellowstone National Park in Developments in Sedimentology, Stromatolites, eds Walter MR (Elsevier, Amsterdam), 273–310.
[21]
Guerquin-Kern JL, Wu TD, Quintana C, Croisy A (2005) Progress in analytical imaging of the cell by dynamic secondary ion mass spectrometry (SIMS microscopy). Biochim et Biophys Acta 1724: 228–238. doi: 10.1016/j.bbagen.2005.05.013
[22]
Petroff A, Wu TD, Liang BQ, Mui J, Guerquin-Kern JL, et al. (2011) Reaction-diffusion model of nutrient uptake in a biofilm: theory and experiment. J Theoret Biol 289: 90–95. doi: 10.1016/j.jtbi.2011.08.004
[23]
Huege J, Goetze J, Schwarz D, Bauwe H, Hagemann M, et al. (2011) Modulation of the major paths of carbon in photorespiratory mutants of Synechocystis. PLoS ONE 6: e16278. doi: 10.1371/journal.pone.0016278
[24]
Sim MS, Liang BQ, Petroff AP, Evans A, Klepac-Ceraj V, et al. (2012) Oxygen-dependent morphogenesis of modern clumped photosynthetic mats and implications for the Archean stromatolite record. Geosciences 2: 235–259. doi: 10.3390/geosciences2040235
[25]
Weathers PJ, Allen MM (1978) Variations in short term products of inorganic carbon fixation in exponential and stationary phase cultures of Aphanocapsa 6308. Arch Microbiol 116: 231–234. doi: 10.1007/bf00417844
[26]
Mackerras AH, De Chazal NM, Smith GD (1990) Transient accumulations of cyanophycin in Anabaena cylindrica and Synechocystis 6308. J Gen Microbiol 136: 2057–2065. doi: 10.1099/00221287-136-10-2057
[27]
Maheswaran M, Ziegler K, Lockau W, Hagemann M, Forchhammer K (2006) PII-regulated arginine synthesis controls accumulation of cyanophycin in Synechocystis sp. strain PCC 6803. J Bact 188: 2730–2734. doi: 10.1128/jb.188.7.2730-2734.2006
[28]
Jahnke L, Embaye T, Hope J, Turk KA, Van Zuilen M, et al. (2004) Lipid biomarker and carbon isotopic signatures for stromatolite-forming, microbial mat communities and Phormidium cultures from Yellowstone National Park. Geobiology 2: 31–47. doi: 10.1111/j.1472-4677.2004.00021.x
[29]
Loiacono ST, Meyer-Dombard DR, Havig JR, Poret-Peterson AT, Hartnett HE, et al. (2012) Evidence for high-temperature in situ nifH transcription in an alkaline hot spring of Lower Geyser Basin, Yellowstone National Park. Environ Microbiol. 14: 1272–83. doi: 10.1111/j.1462-2920.2012.02710.x
[30]
Petroff AP, Sim MS, Maslov A, Krupenin M, Rothman DH, et al. (2010) Biophysical basis for the geometry of conical stromatolites. Proc Natl Acad Sci USA 107: 9956–9961. doi: 10.1073/pnas.1001973107
[31]
Hackenberg C, Huege J, Engelhardt A, Wittink F, Laue M, et al. (2012) Low-carbon acclimation in carboxysome-less and photorespiratory mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Microbiology 158: 398–413. doi: 10.1099/mic.0.054544-0
[32]
Kelly GJ, Latzko E (1977) Chloroplast phosphofructokinase II. Partial purification, kinetic and regulatory properties. Plant Physiol 60: 295–299. doi: 10.1104/pp.60.2.295
[33]
Norman EG, Colman B (1991) Purification and characterization of phosphoglycolate phosphatase from the cyanobacterium Coccochloris peniocystis. Plant physiol 95: 693–698. doi: 10.1104/pp.95.3.693
[34]
Bosak T, Liang BQ, Sim MS, Petroff AP (2009) Morphological record of oxygenic photosynthesis in conical stromatolites. Proc Natl Acad Sci USA 106: 10939–10943. doi: 10.1073/pnas.0900885106
[35]
Kruskopf M, Du Plessis S (2006) Growth and filament length of the bloom forming Oscillatoria simplicissima (Oscillatoriales, Cyanophyta) in varying N and P concentrations: Hydrobiol. 556: 357–362. doi: 10.1007/s10750-005-1061-0
[36]
Bosak T, Bush JWM, Flynn MR, Liang BQ, Ono S, et al. (2010) Formation and stability of oxygen-rich bubbles that shape photosynthetic mats. Geobiology 8: 45–55. doi: 10.1111/j.1472-4669.2009.00227.x
[37]
Castenholz RW (1988) in Methods of Enzymology, eds Packer L and Glazer AN (Academic, San Diego), 68–93.
[38]
Rasband WS (1997–2006) ImageJ, U. S. National Institutes of Health (Bethesda, Maryland, USA). Available: http://rsb.info.nih.gov/ij/.
[39]
Benson D (2003) HSI Ratio Method. Available: http://www.nrims.hms.harvard.edu/slides/?NRIMS_-_BensonWorkshop2003.pdf.
[40]
Poczatek C, Kaufman Z, Lechene C (2009) OpenMIMS ImageJ Plugin Guide. Harvard Medical School (Boston, Massachusetts, USA).