全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Substance P Differentially Modulates Firing Rate of Solitary Complex (SC) Neurons from Control and Chronic Hypoxia-Adapted Adult Rats

DOI: 10.1371/journal.pone.0088161

Full-Text   Cite this paper   Add to My Lib

Abstract:

NK1 receptors, which bind substance P, are present in the majority of brainstem regions that contain CO2/H+-sensitive neurons that play a role in central chemosensitivity. However, the effect of substance P on the chemosensitive response of neurons from these regions has not been studied. Hypoxia increases substance P release from peripheral afferents that terminate in the caudal nucleus tractus solitarius (NTS). Here we studied the effect of substance P on the chemosensitive responses of solitary complex (SC: NTS and dorsal motor nucleus) neurons from control and chronic hypoxia-adapted (CHx) adult rats. We simultaneously measured intracellular pH and electrical responses to hypercapnic acidosis in SC neurons from control and CHx adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. Substance P significantly increased the basal firing rate in SC neurons from control and CHx rats, although the increase was smaller in CHx rats. However, substance P did not affect the chemosensitive response of SC neurons from either group of rats. In conclusion, we found that substance P plays a role in modulating the basal firing rate of SC neurons but the magnitude of the effect is smaller for SC neurons from CHx adult rats, implying that NK1 receptors may be down regulated in CHx adult rats. Substance P does not appear to play a role in modulating the firing rate response to hypercapnic acidosis of SC neurons from either control or CHx adult rats.

References

[1]  Pernow B (1983) Substance P. Pharmacol Rev. 35(2): 85–141.
[2]  Lagercrantz H, Srinivasan M, Yamamoto Y, Prabhakar N (1991) Functional role of substance P for respiratory control during development. Ann N Y Acad Sci 632: 48–52. doi: 10.1111/j.1749-6632.1991.tb33093.x
[3]  Otsuka M, Yoshioka K (1993) Neurotransmitter functions of mammalian tachykinins. Physiol Rev 73(2): 229–308.
[4]  H?kfelt T, Pernow B, Wahren J (2001) Substance P: a pioneer amongst neuropeptides. J Intern Med 249(1): 27–40. doi: 10.1046/j.0954-6820.2000.00773.x
[5]  Hedner J, Hedner T, Wessberg P, Jonason J (1984) Interaction of substance P with the respiratory control system in the rat. J Pharmacol Exp Ther 228(1): 196–201.
[6]  Morin-Surun MP, Jordan D, Champagnat J, Spyer KM, Denavit-Saubie M (1984) Excitatory effects of iontophoretically applied substance P on neurons in the nucleus tractus solitarius of the cat: lack of interaction with opiates and opioids. Brain Res 307(1–2): 388–392. doi: 10.1016/0006-8993(84)90502-x
[7]  Yamamoto Y, Lagercrantz H (1985) Some effects of substance P on central respiratory control in rabbit pups. Acta Physiol Scand 124: 449–455. doi: 10.1111/j.1748-1716.1985.tb07681.x
[8]  Chen Z, Hedner J, Hedner T (1990) Local effects of substance P on respiratory regulation in the rat medulla oblongata. J Appl Physiol 68: 693–699. doi: 10.1016/0006-8993(91)90542-4
[9]  Chen Z, Hedner J, Hedner T (1990) Substance P in the ventrolateral medulla oblongata regulates ventilatory responses. J Appl Physiol 68: 2631–2639. doi: 10.1016/0167-0115(88)90135-8
[10]  Nattie EE, Li A (2002) Substance P-saporin lesion of neurons with NK1 receptors in one chemoreceptor site in rats decreases ventilation and chemosensitivity. J Physiol 544: 603–616. doi: 10.1113/jphysiol.2002.020032
[11]  Hodges MR, Opansky C, Qian B, Davis S, Bonis J, et al. (2004) Transient attenuation of CO2 sensitivity after neurotoxic lesions in the medullary raphe area of awake goats. J Appl Physiol 97: 2236–2247. doi: 10.1152/japplphysiol.00584.2004
[12]  Nattie E, Li A (2006) Neurokinin-1 receptor-expressing neurons in the ventral medulla are essential for normal central and peripheral chemoreception in the conscious rat. J Appl Physiol 101: 1596–1606. doi: 10.1152/japplphysiol.00347.2006
[13]  Wickstr?m HR, Berner J, Holgert H, H?kfelt T, Lagercrantz H (2004) Hypoxic response in newborn rat is attenuated by neurokinin-1 receptor blockade. Respir Physiol Neurobiol 140(1): 19–31. doi: 10.1016/j.resp.2004.01.008
[14]  Finley JC, Polak J, Katz DM (1992) Transmitter diversity in carotid body afferent neurons: Dopaminergic and peptidergic phenotypes. Neuroscience 51: 973–987. doi: 10.1016/0306-4522(92)90534-9
[15]  Donoghue S, Felder RB, Jordan D, Spyer KM (1984) The central projections of carotid baroreceptors and chemoreceptors in the cat: a neurophysiological study. J Physiol 347: 397–409.
[16]  Finley JC, Katz DM (1992) Central organization of carotid body afferent projections to the brainstem of the rat. Brain Res 572: 108–116. doi: 10.1016/0006-8993(92)90458-l
[17]  Mifflin SW (1992) Arterial chemoreceptor input to nucleus tractus solitarius. Am J Physiol 263: R368–R375.
[18]  Dobbins EG, Feldman JL (1994) Brainstem network controlling descending drive to phrenic motoneurons in rat. J Comp Neurol 347: 64–86. doi: 10.1002/cne.903470106
[19]  Lopez-Barneo J (2003) Oxygen and glucose sensing by carotid body glomus cells. Curr Opin Neurobiol 13: 493–499. doi: 10.1016/s0959-4388(03)00093-x
[20]  Dean JB, Lawing WL, Millhorn DE (1989) CO2 decreases membrane conductance and depolarizes neurons in the nucleus tractus solitarii. Exp Brain Res 76: 656–661. doi: 10.1007/bf00248922
[21]  Dean JB, Bayliss DA, Erickson JT, Lawing WL, Millhorn DE (1990) Depolarization and stimulation of neurons in nucleus tractus solitarii by carbon dioxide does not require chemical synaptic input. Neuroscience 36: 207–216. doi: 10.1016/0306-4522(90)90363-9
[22]  Nattie EE, Li A (2002) CO2 dialysis in nucleus tractus solitarius region of rat increases ventilation in sleep and wakefulness. J Appl Physiol 92: 2119–2130.
[23]  Conrad SC, Nichols NL, Ritucci NA, Dean JB, Putnam RW (2009) Development of chemosensitivity in neurons from the nucleus tractus solitarii (NTS) of neonatal rats. Resp Physiol Neurobiol 166(1): 4–12. doi: 10.1016/j.resp.2008.11.005
[24]  Nichols NL, Mulkey DK, Wilkinson KA, Powell FL, Dean JB, et al. (2009) Characterization of the chemosensitive response of individual solitary complex neurons from adult rats. Am J Physiol Regul Integr Comp Physiol 296: R763–773. doi: 10.1152/ajpregu.90769.2008
[25]  Nakaya Y, Kaneko T, Shigemoto R, Nakanishi S, Mizuno N (1994) Immunohistochemical localization of substance P receptor in the central nervous system of the adult rat. J Comp Neurol 347: 249–274. doi: 10.1002/cne.903470208
[26]  Mazzone SB, Hinrichsen CF, Geraghty DP (1998) Hypoxia attenuates the respiratory response to injection of substance P into the nucleus of the solitary tract of the rat. Neurosci Lett 256(1): 9–12. doi: 10.1016/s0304-3940(98)00743-5
[27]  Mazzone SB, Geraghty DP (2000) Characterization and regulation of tachykinin receptors in the nucleus tractus solitarius. Clin Exp Pharmacol Physiol 27: 939–942. doi: 10.1046/j.1440-1681.2000.03365.x
[28]  Chen CY, Bechtold AG, Tabor J, Bonham AC (2009) Exercise reduces GABA synaptic input onto nucleus tractus solitarii baroreceptor second-order neurons via NK1 receptor internalization in spontaneously hypertensive rats. J Neurosci 29: 2754–2761. doi: 10.1523/jneurosci.4413-08.2009
[29]  Mifflin SW (1997) Short-term potentiation of carotid sinus nerve inputs to neurons in the nucleus of the solitary tract. Respir Physiol 110: 227–236. doi: 10.1016/s0034-5687(97)00087-x
[30]  Lindefors N, Yamamoto Y, Pantaleo T, Lagercrantz H, Brodin E, et al. (1986) In vivo release of substance P in the nucleus tractus solitarii increases during hypoxia. Neurosci Lett 69: 94–97. doi: 10.1016/0304-3940(86)90421-0
[31]  Srinivasan M, Goiny M, Pantaleo T, Lagercrantz H, Brodin E, et al. (1991) Enhanced in vivo release of substance P in the nucleus tractus solitarii during hypoxia in the rabbit: role of peripheral input. Brain Res 546: 211–216. doi: 10.1016/0006-8993(91)91483-h
[32]  Grady EF, Garland AM, Gamp PD, Lovett M, Payan DG, et al. (1995) Delineation of the endocytic pathway of substance P and its seven-transmembrane domain NK1 receptor. Mol Biol Cell 5: 509–524. doi: 10.1091/mbc.6.5.509
[33]  Mantyh PW, DeMaster E, Malhotra A, Ghilardi JR, Rogers SD, et al. (1995) Receptor endocytosis and dendrite reshaping in spinal neurons after somatosensory stimulation. Science 268(5217): 1629–1632. doi: 10.1126/science.7539937
[34]  Lessard A, Coleman CG, Pickel VM (2010) Chronic intermittent hypoxia reduces neurokinin-1 (NK(1)) density in small dendrites of non-catecholaminergic neurons in mouse nucleus tractus solitarius. Exp Neurol 223: 634–644. doi: 10.1016/j.expneurol.2010.02.013
[35]  Nichols NL, Wilkinson KA, Powell FL, Dean JB, Putnam RW (2009) Chronic hypoxia suppresses the CO2 response of solitary complex (SC) neurons from rats. Respir Physiol Neurobiol. 168(3): 272–280. doi: 10.1016/j.resp.2009.07.012
[36]  Nichols NL, Wilkinson KA, Powell FL, Putnam R (2007) Effect of substance P (SP) on firing rate and intracellular pH of individual nucleus tractus solitarius (NTS) neurons from adult rats. Soc Neurosci Abstr 33: Program No. 627.15.
[37]  Villafuerte FC, Cárdenas-Alayza R, Macarlupú JL, Monge-CC, León-Velarde F (2007) Ventilatory response to acute hypoxia in transgenic mice over-expressing erythropoietin: effect of acclimation to 3-week hypobaric hypoxia. Respir Physiol Neurobiol 158(2–3): 243–50. doi: 10.1016/j.resp.2007.06.010
[38]  Filosa JA, Putnam RW (2003) Multiple targets of chemosensitive signaling in locus coeruleus neurons: role of K+ and Ca2+, channels. Am J Physiol Cell Physiol 284: C145–C155. doi: 10.1152/ajpcell.00346.2002
[39]  Ritucci NA, Dean JB, Putnam RW (2005) Somatic vs. dendritic responses to hypercapnia in chemosensitive locus coeruleus neurons from neonatal rats. Am J Physiol Cell Physiol 289: C1094–C1104. doi: 10.1152/ajpcell.00329.2004
[40]  Ritucci NA, Erlichman JS, Leiter JC, Putnam RW (2005) Response of membrane potential and intracellular pH to hypercapnia in neurons and astrocytes from rat retrotrapezoid nucleus. Am J Physiol Regul Integr Comp Physiol 289: R851–R861. doi: 10.1152/ajpregu.00132.2005
[41]  Mulkey DK, Henderson III RA, Ritucci NA, Putnam RW, Dean JB (2004) Oxidative stress decreases intracellular pH and Na+/H+ exchange and increases excitability of solitary complex neurons from rat brain slices. Am J Physiol Cell Physiol 286: C940–C951. doi: 10.1152/ajpcell.00323.2003
[42]  Blanton MG, Turco JJ, Kriegstein AR (1989) Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex. J Neurosci Methods 30: 203–210. doi: 10.1016/0165-0270(89)90131-3
[43]  Dean JB, Huang R-Q, Erlichman JS, Southard TL, Hellard DT (1997) Cell-cell coupling occurs in dorsal medullary neurons after minimizing anatomical-coupling artifacts. Neuroscience 80: 21–40. doi: 10.1016/s0306-4522(97)00016-x
[44]  Huang R-Q, Erlichman JS, Dean JB (1997) Cell-cell coupling between CO2 excited neurons in the dorsal medulla oblongata. Neuroscience 80: 41–57. doi: 10.1016/s0306-4522(97)00017-1
[45]  Filosa JA, Dean JB, Putnam RW (2002) Role of intracellular and extracellular pH in the chemosensitive response of rat locus coeruleus neurons. J Physiol 541 (2) 493–509. doi: 10.1113/jphysiol.2001.014142
[46]  Wang W, Richerson GB (1999) Development of chemosensitivity of rat medullary raphé neurons. Neuroscience 90(3): 1001–1011. doi: 10.1016/s0306-4522(98)00505-3
[47]  Murakoshi T, Suzue T, Tamai S (1985) A pharmacological study on respiratory rhythm in the isolated brainstem-spinal cord preparation of the newborn rat. Br J Pharmacol 86: 95–104. doi: 10.1111/j.1476-5381.1985.tb09439.x
[48]  Gray PA, Reckling JC, Bocchiaro CM, Feldman JL (1999) Modulation of respiratory frequency by peptidergic input to rhythmogenic neurons in the preB?tzinger complex. Science 286: 1566–1567. doi: 10.1126/science.286.5444.1566
[49]  Pena F, Ramirez JM (2004) Substance P-mediated modulation of pacemaker properties in the mammalian respiratory network. J Neurosci 24: 7549–7556. doi: 10.1523/jneurosci.1871-04.2004
[50]  Nattie EE, Li A, Richerson GB, Lappi DA (2004) Medullary serotonergic neurons and adjacent neurons that express neurokinin-1 receptors are both involved in chemoreception in vivo. J Physiol 556: 235–253. doi: 10.1113/jphysiol.2003.059766
[51]  Wilkinson KA, Fu Z, Powell FL (2011) Ventilatory effects of substance P-saporin lesions in the nucleus tractus solitarii of chronically hypoxic rats. Am J Physiol Regul Integr Comp Physiol 301(2): R343–350. doi: 10.1152/ajpregu.00375.2010
[52]  Onimaru H, Ikeda K, Kawakami K (2012) Postsynaptic mechanisms of CO(2) responses in parafacial respiratory neurons of newborn rats. J Physiol 590: 1615–1624. doi: 10.1113/jphysiol.2011.222687
[53]  Berner J, Shvarev Y, Lagercrantz H, Bilkei-Gorzo A, H?kfelt T, et al. (2007) Altered respiratory pattern and hypoxic response in transgenic newborn mice lacking the tachykinin-1 gene. J Appl Physiol 103(2): 552–559. doi: 10.1152/japplphysiol.01389.2006
[54]  Nattie EE, Forster HV (2010) Foreward. Resp Physiol Neurobiol 173: 193–194.
[55]  Aicher SA, Saravay RH, Cravo S, Jeske I, Morrison SF, et al. (1996) Monosynaptic projections from the nucleus tractus solitarii to the C1 adrenergic neurons in the rostral ventrolateral medulla: comparison with the input from the caudal ventrolateral medulla. J Comp Neurol 373: 62–75. doi: 10.1002/(sici)1096-9861(19960909)373:1<62::aid-cne6>3.0.co;2-b
[56]  Otake K, Ezure K, Lipski J, Wong She RB (1992) Projections from the commissural subnucleus of the nucleus of the solitary tract: an anterograde tracing study in the cat. J Comp Neurol 324: 365–378. doi: 10.1002/cne.903240307
[57]  Rosin DL, Chang DA, Guyenet PG (2006) Afferent and efferent projections of the rat retrotrapezoid nucleus. J Comp Neurol 499: 64–89. doi: 10.1002/cne.21105
[58]  Cedarbaum JM, Aghajanian GK (1978) Afferent projections to the rat locus coeruleus as determined by a retrograde tracing technique. J Comp Neurol 178: 1–16. doi: 10.1002/cne.901780102
[59]  Van Bockstaele EJ, Peoples J, Telegan P (1999) Efferent projections of the nucleus of the solitary tract to peri-locus coeruleus dendrites in rat brain: evidence for a monosynaptic pathway. J Comp Neurol 412: 410–428. doi: 10.1002/(sici)1096-9861(19990927)412:3<410::aid-cne3>3.0.co;2-f
[60]  Ptak K, Burnet H, Blanchi B, Sieweke M, De Felipe C, et al. (2002) The murine neurokinin NK1 receptor gene contributes to the adult hypoxic facilitation of ventilation. Eur J Neurosci 16: 2245–2252. doi: 10.1046/j.1460-9568.2002.02305.x
[61]  Dean JB, Gallman EA, Zhu WH, Millhorn DE (1991) Multiple effects of hypoxia on neurons in dorsal motor nucleus (X) and nucleus tractus solitarii (NTS). Soc Neurosci Abstr 17: 187.7.
[62]  Nolan PC, Waldrop TG (1993) In vivo and in vitro responses of neurons in the ventrolateral medulla to hypoxia. Brain Res 630: 101–114. doi: 10.1016/0006-8993(93)90648-7
[63]  Sun M-K, Reis DJ (1994) Hypoxia selectively excites vasomotor neurons of rostral ventrolateral medulla in rats. Am J Physiol Regul Integr Comp Physiol 266: R245–R256.
[64]  Ramirez JM, Quellmalz UJA, Wilken B, Richter DW (1998) The hypoxic response of neurons within the in vitro mammalian respiratory network. J Physiol 507: 571–582. doi: 10.1111/j.1469-7793.1998.571bt.x
[65]  Mazza Jr E, Edelman NH, Neubauer JA (2000) Hypoxic excitation in neurons cultured from the rostral ventrolateral medulla of the neonatal rat. J Appl Physiol 88: 2319–2329.
[66]  Solomon IC, Edelman NH, Neubauer JA (2000) The pre-B?tzinger complex functions as a central hypoxia chemoreceptor for respiration in vivo. J Neurophysiol 83: 2854–2868.
[67]  Pascual O, Morin-Surun MP, Barna B, Denavit-Saubié M, Peqquignot JM, et al. (2002) Progesterone reverses the neuronal responses to hypoxia in rat nucleus tractus solitarius in vitro. J Physiol 544: 511–520. doi: 10.1111/j..2002.t01-1-00511.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133