全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

TLR2, TLR4 and CD14 Recognize Venom-Associated Molecular Patterns from Tityus serrulatus to Induce Macrophage-Derived Inflammatory Mediators

DOI: 10.1371/journal.pone.0088174

Full-Text   Cite this paper   Add to My Lib

Abstract:

Scorpion sting-induced human envenomation provokes an intense inflammatory reaction. However, the mechanisms behind the recognition of scorpion venom and the induction of mediator release in mammalian cells are unknown. We demonstrated that TLR2, TLR4 and CD14 receptors sense Tityus serrulatus venom (TsV) and its major component, toxin 1 (Ts1), to mediate cytokine and lipid mediator production. Additionally, we demonstrated that TsV induces TLR2- and TLR4/MyD88-dependent NF-κB activation and TLR4-dependent and TLR2/MyD88-independent c-Jun activation. Similar to TsV, Ts1 induces MyD88-dependent NF-κB phosphorylation via TLR2 and TLR4 receptors, while c-Jun activation is dependent on neither TLR2 nor TLR4/MyD88. Therefore, we propose the term venom-associated molecular pattern (VAMP) to refer to molecules that are introduced into the host by stings and are recognized by PRRs, resulting in inflammation.

References

[1]  Magalhaes MM, Pereira ME, Amaral CF, Rezende NA, Campolina D, et al. (1999) Serum levels of cytokines in patients envenomed by Tityus serrulatus scorpion sting. Toxicon 37: 1155–1164. doi: 10.1016/s0041-0101(98)00251-7
[2]  Zoccal KF, Bitencourt Cda S, Sorgi CA, Bordon Kde C, Sampaio SV, et al. (2013) Ts6 and Ts2 from Tityus serrulatus venom induce inflammation by mechanisms dependent on lipid mediators and cytokine production. Toxicon 61: 1–10. doi: 10.1016/j.toxicon.2012.10.002
[3]  Cupo P, Jurca M, Azeedo-Marques MM, Oliveira JS, Hering SE (1994) Severe scorpion envenomation in Brazil. Clinical, laboratory and anatomopathological aspects. Rev Inst Med Trop Sao Paulo 36: 67–76. doi: 10.1590/s0036-46651994000100011
[4]  Cologna CT, Marcussi S, Giglio JR, Soares AM, Arantes EC (2009) Tityus serrulatus scorpion venom and toxins: an overview. Protein Pept Lett 16: 920–932. doi: 10.2174/092986609788923329
[5]  Pimenta AM, Legros C, Almeida Fde M, Mansuelle P, De Lima ME, et al. (2003) Novel structural class of four disulfide-bridged peptides from Tityus serrulatus venom. Biochem Biophys Res Commun 301: 1086–1092. doi: 10.1016/s0006-291x(03)00082-2
[6]  Rates B, Ferraz KK, Borges MH, Richardson M, De Lima ME, et al. (2008) Tityus serrulatus venom peptidomics: assessing venom peptide diversity. Toxicon 52: 611–618. doi: 10.1016/j.toxicon.2008.07.010
[7]  Vasconcelos F, Lanchote VL, Bendhack LM, Giglio JR, Sampaio SV, et al. (2005) Effects of voltage-gated Na+ channel toxins from Tityus serrulatus venom on rat arterial blood pressure and plasma catecholamines. Comp Biochem Physiol C Toxicol Pharmacol 141: 85–92. doi: 10.1016/j.cca.2005.05.012
[8]  Jonas P, Vogel W, Arantes EC, Giglio JR (1986) Toxin gamma of the scorpion Tityus serrulatus modifies both activation and inactivation of sodium permeability of nerve membrane. Pflugers Arch 407: 92–99. doi: 10.1007/bf00580727
[9]  Polikarpov I, Junior MS, Marangoni S, Toyama MH, Teplyakov A (1999) Crystal structure of neurotoxin Ts1 from Tityus serrulatus provides insights into the specificity and toxicity of scorpion toxins. J Mol Biol 290: 175–184. doi: 10.1006/jmbi.1999.2868
[10]  Petricevich VL (2010) Scorpion venom and the inflammatory response. Mediators Inflamm 2010: 903295. doi: 10.1155/2010/903295
[11]  Nascimento EB Jr, Costa KA, Bertollo CM, Oliveira AC, Rocha LT, et al. (2005) Pharmacological investigation of the nociceptive response and edema induced by venom of the scorpion Tityus serrulatus. Toxicon 45: 585–593. doi: 10.1016/j.toxicon.2004.12.020
[12]  Zoccal KF, Bitencourt Cda S, Secatto A, Sorgi CA, Bordon Kde C, et al. (2011) Tityus serrulatus venom and toxins Ts1, Ts2 and Ts6 induce macrophage activation and production of immune mediators. Toxicon 57: 1101–1108. doi: 10.1016/j.toxicon.2011.04.017
[13]  Pessini AC, de Souza AM, Faccioli LH, Gregorio ZM, Arantes EC (2003) Time course of acute-phase response induced by Tityus serrulatus venom and TsTX-I in mice. Int Immunopharmacol 3: 765–774. doi: 10.1016/s1567-5769(03)00078-x
[14]  Sorgi CA, Secatto A, Fontanari C, Turato WM, Belanger C, et al. (2009) Histoplasma capsulatum cell wall {beta}-glucan induces lipid body formation through CD18, TLR2, and dectin-1 receptors: correlation with leukotriene B4 generation and role in HIV-1 infection. J Immunol 182: 4025–4035. doi: 10.4049/jimmunol.0801795
[15]  Lentschat A, Karahashi H, Michelsen KS, Thomas LS, Zhang W, et al. (2005) Mastoparan, a G protein agonist peptide, differentially modulates TLR4- and TLR2-mediated signaling in human endothelial cells and murine macrophages. J Immunol 174: 4252–4261. doi: 10.4049/jimmunol.174.7.4252
[16]  Liu X, Zhan Z, Li D, Xu L, Ma F, et al. (2011) Intracellular MHC class II molecules promote TLR-triggered innate immune responses by maintaining activation of the kinase Btk. Nat Immunol 12: 416–424. doi: 10.1038/ni.2015
[17]  O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7: 353–364. doi: 10.1038/nri2079
[18]  Yang X, Zhang G, Tang X, Jiao J, Kim SY, et al. (2013) Toll-like receptor 4/nuclear factor-kappaB signaling pathway is involved in ACTG-toxin H-mediated anti-inflammatory effect. Mol Cell Biochem 374: 29–36. doi: 10.1007/s11010-012-1502-9
[19]  Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449: 819–826. doi: 10.1038/nature06246
[20]  Chen GY, Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10: 826–837. doi: 10.1038/nri2873
[21]  Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21: 335–376. doi: 10.1146/annurev.immunol.21.120601.141126
[22]  Bowie A, O’Neill LA (2000) Oxidative stress and nuclear factor-kappaB activation: a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol 59: 13–23.
[23]  Aktan F (2004) iNOS-mediated nitric oxide production and its regulation. Life Sci 75: 639–653. doi: 10.1016/j.lfs.2003.10.042
[24]  Ghosh S, Karin M (2002) Missing pieces in the NF-kappaB puzzle. Cell 109 Suppl: S81–96 doi: 10.1016/s0092-8674(02)00703-1
[25]  Kunz M, Ibrahim S, Koczan D, Thiesen HJ, Kohler HJ, et al. (2001) Activation of c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) is critical for hypoxia-induced apoptosis of human malignant melanoma. Cell Growth Differ 12: 137–145.
[26]  Hu X, Chen J, Wang L, Ivashkiv LB (2007) Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation. J Leukoc Biol 82: 237–243. doi: 10.1189/jlb.1206763
[27]  Kirkland TN, Finley F, Leturcq D, Moriarty A, Lee JD, et al. (1993) Analysis of lipopolysaccharide binding by CD14. J Biol Chem 268: 24818–24823.
[28]  da Silva Correia J, Soldau K, Christen U, Tobias PS, Ulevitch RJ (2001) Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. transfer from CD14 to TLR4 and MD-2. J Biol Chem 276: 21129–21135. doi: 10.1074/jbc.m009164200
[29]  Lucas K, Maes M (2013) Role of the Toll Like Receptor (TLR) Radical Cycle in Chronic Inflammation: Possible Treatments Targeting the TLR4 Pathway. Mol Neurobiol 48: 190–204. doi: 10.1007/s12035-013-8425-7
[30]  Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, et al. (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412: 346–351. doi: 10.1038/35085597
[31]  Dauphinee SM, Karsan A (2006) Lipopolysaccharide signaling in endothelial cells. Lab Invest 86: 9–22. doi: 10.1038/labinvest.3700366
[32]  Arantes EC, Prado WA, Sampaio SV, Giglio JR (1989) A simplified procedure for the fractionation of Tityus serrulatus venom: isolation and partial characterization of TsTX-IV, a new neurotoxin. Toxicon 27: 907–916. doi: 10.1016/0041-0101(89)90102-5
[33]  Pessini AC, Takao TT, Cavalheiro EC, Vichnewski W, Sampaio SV, et al. (2001) A hyaluronidase from Tityus serrulatus scorpion venom: isolation, characterization and inhibition by flavonoids. Toxicon 39: 1495–1504. doi: 10.1016/s0041-0101(01)00122-2
[34]  Haeggstrom JZ, Funk CD (2011) Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev 111: 5866–5898. doi: 10.1021/cr200246d
[35]  Harizi H, Corcuff JB, Gualde N (2008) Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology. Trends Mol Med 14: 461–469. doi: 10.1016/j.molmed.2008.08.005
[36]  Hirata T, Narumiya S (2012) Prostanoids as regulators of innate and adaptive immunity. Adv Immunol 116: 143–174. doi: 10.1016/b978-0-12-394300-2.00005-3
[37]  Murphy RC, Gijon MA (2007) Biosynthesis and metabolism of leukotrienes. Biochem J 405: 379–395. doi: 10.1042/bj20070289
[38]  Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 9: 162–176. doi: 10.1038/nrm2335
[39]  Pessini AC, Kanashiro A, Malvar Ddo C, Machado RR, Soares DM, et al. (2008) Inflammatory mediators involved in the nociceptive and oedematogenic responses induced by Tityus serrulatus scorpion venom injected into rat paws. Toxicon 52: 729–736. doi: 10.1016/j.toxicon.2008.08.017
[40]  MacKichan ML, DeFranco AL (1999) Role of ceramide in lipopolysaccharide (LPS)-induced signaling. LPS increases ceramide rather than acting as a structural homolog. J Biol Chem 274: 1767–1775. doi: 10.1074/jbc.274.3.1767
[41]  Lin CC, Hsieh HL, Shih RH, Chi PL, Cheng SE, et al. (2013) Up-regulation of COX-2/PGE2 by endothelin-1 via MAPK-dependent NF-kappaB pathway in mouse brain microvascular endothelial cells. Cell Commun Signal 11: 8. doi: 10.1186/1478-811x-11-8
[42]  Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18: 621–663. doi: 10.1146/annurev.immunol.18.1.621
[43]  Hardiman G, Rock FL, Balasubramanian S, Kastelein RA, Bazan JF (1996) Molecular characterization and modular analysis of human MyD88. Oncogene 13: 2467–2475.
[44]  Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30: 16–34. doi: 10.3109/08830185.2010.529976
[45]  Kolli D, Velayutham TS, Casola A (2013) Host-Viral Interactions: Role of Pattern Recognition Receptors (PRRs) in Human Pneumovirus Infections. Pathogens 2.
[46]  Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11: 723–737. doi: 10.1038/nri3073
[47]  Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, et al. (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189: 1777–1782. doi: 10.1084/jem.189.11.1777
[48]  Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, et al. (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11: 443–451. doi: 10.1016/s1074-7613(00)80119-3
[49]  Campos MA, Almeida IC, Takeuchi O, Akira S, Valente EP, et al. (2001) Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J Immunol 167: 416–423. doi: 10.4049/jimmunol.167.1.416
[50]  Means TK, Lien E, Yoshimura A, Wang S, Golenbock DT, et al. (1999) The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J Immunol 163: 6748–6755.
[51]  Weinlich R, Bortoluci KR, Chehab CF, Serezani CH, Ulbrich AG, et al. (2008) TLR4/MYD88-dependent, LPS-induced synthesis of PGE2 by macrophages or dendritic cells prevents anti-CD3-mediated CD95L upregulation in T cells. Cell Death Differ 15: 1901–1909. doi: 10.1038/cdd.2008.128
[52]  Coffey MJ, Phare SM, Luo M, Peters-Golden M (2008) Guanylyl cyclase and protein kinase G mediate nitric oxide suppression of 5-lipoxygenase metabolism in rat alveolar macrophages. Biochim Biophys Acta 1781: 299–305. doi: 10.1016/j.bbalip.2008.04.005
[53]  Mancuso G, Midiri A, Beninati C, Piraino G, Valenti A, et al. (2002) Mitogen-activated protein kinases and NF-kappa B are involved in TNF-alpha responses to group B streptococci. J Immunol 169: 1401–1409. doi: 10.4049/jimmunol.169.3.1401
[54]  Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2: 725–734. doi: 10.1038/nri910
[55]  Guha M, Mackman N (2001) LPS induction of gene expression in human monocytes. Cell Signal 13: 85–94. doi: 10.1016/s0898-6568(00)00149-2
[56]  Moon DO, Park SY, Lee KJ, Heo MS, Kim KC, et al. (2007) Bee venom and melittin reduce proinflammatory mediators in lipopolysaccharide-stimulated BV2 microglia. Int Immunopharmacol 7: 1092–1101. doi: 10.1016/j.intimp.2007.04.005
[57]  Takeda AA, dos Santos JI, Marcussi S, Silveira LB, Soares AM, et al. (2004) Crystallization and preliminary X-ray diffraction analysis of an acidic phospholipase A(2) complexed with p-bromophenacyl bromide and alpha-tocopherol inhibitors at 1.9- and 1.45-A resolution. Biochim Biophys Acta 1699: 281–284. doi: 10.1016/j.bbapap.2004.02.005
[58]  Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16: 3–9. doi: 10.1016/j.smim.2003.10.003
[59]  O’Neill LA, Golenbock D, Bowie AG (2013) The history of Toll-like receptors - redefining innate immunity. Nat Rev Immunol 13: 453–460. doi: 10.1038/nri3446
[60]  Girard R, Pedron T, Uematsu S, Balloy V, Chignard M, et al. (2003) Lipopolysaccharides from Legionella and Rhizobium stimulate mouse bone marrow granulocytes via Toll-like receptor 2. J Cell Sci 116: 293–302. doi: 10.1242/jcs.00212
[61]  Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, et al. (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci U S A 97: 13766–13771. doi: 10.1073/pnas.250476497
[62]  Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5: 987–995. doi: 10.1038/ni1112
[63]  Akira S (2006) TLR signaling. Curr Top Microbiol Immunol 311: 1–16.
[64]  Yang FL, Hua KF, Yang YL, Zou W, Chen YP, et al. (2008) TLR-independent induction of human monocyte IL-1 by phosphoglycolipids from thermophilic bacteria. Glycoconj J 25: 427–439. doi: 10.1007/s10719-007-9088-2
[65]  Chen R, Lim JH, Jono H, Gu XX, Kim YS, et al. (2004) Nontypeable Haemophilus influenzae lipoprotein P6 induces MUC5AC mucin transcription via TLR2-TAK1-dependent p38 MAPK-AP1 and IKKbeta-IkappaBalpha-NF-kappaB signaling pathways. Biochem Biophys Res Commun 324: 1087–1094. doi: 10.1016/j.bbrc.2004.09.157
[66]  Burns E, Eliyahu T, Uematsu S, Akira S, Nussbaum G (2010) TLR2-dependent inflammatory response to Porphyromonas gingivalis is MyD88 independent, whereas MyD88 is required to clear infection. J Immunol 184: 1455–1462. doi: 10.4049/jimmunol.0900378
[67]  Mata-Haro V, Cekic C, Martin M, Chilton PM, Casella CR, et al. (2007) The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science 316: 1628–1632. doi: 10.1126/science.1138963
[68]  Uematsu S, Sato S, Yamamoto M, Hirotani T, Kato H, et al. (2005) Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-{alpha} induction. J Exp Med 201: 915–923. doi: 10.1084/jem.20042372
[69]  Horng T, Medzhitov R (2001) Drosophila MyD88 is an adapter in the Toll signaling pathway. Proc Natl Acad Sci U S A 98: 12654–12658. doi: 10.1073/pnas.231471798
[70]  Kaisho T, Takeuchi O, Kawai T, Hoshino K, Akira S (2001) Endotoxin-induced maturation of MyD88-deficient dendritic cells. J Immunol 166: 5688–5694. doi: 10.4049/jimmunol.166.9.5688
[71]  Hoebe K, Janssen EM, Kim SO, Alexopoulou L, Flavell RA, et al. (2003) Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Nat Immunol 4: 1223–1229. doi: 10.1038/ni1010
[72]  Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, et al. (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301: 640–643. doi: 10.1126/science.1087262
[73]  Krummen M, Balkow S, Shen L, Heinz S, Loquai C, et al. (2010) Release of IL-12 by dendritic cells activated by TLR ligation is dependent on MyD88 signaling, whereas TRIF signaling is indispensable for TLR synergy. J Leukoc Biol 88: 189–199. doi: 10.1189/jlb.0408228

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133