全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Comparative Variation within the Genome of Campylobacter jejuni NCTC 11168 in Human and Murine Hosts

DOI: 10.1371/journal.pone.0088229

Full-Text   Cite this paper   Add to My Lib

Abstract:

Campylobacteriosis incited by C. jejuni is a significant enteric disease of human beings. A person working with two reference strains of C. jejuni National Collection of Type Cultures (NCTC) 11168 developed symptoms of severe enteritis including bloody diarrhea. The worker was determined to be infected by C. jejuni. In excess of 50 isolates were recovered from the worker’s stool. All of the recovered isolates and the two reference strains were indistinguishable from each other based on comparative genomic fingerprint subtyping. Whole genome sequence analysis indicated that the worker was infected with a C. jejuni NCTC 11168 obtained from the American Type Culture Collection; this strain (NCTC 11168-GSv) is the genome sequence reference. After passage through the human host, major genetic changes including indel mutations within twelve contingency loci conferring phase variations were detected in the genome of C. jejuni. Specific and robust single nucleotide polymorphism (SNP) changes in the human host were also observed in two loci (Cj0144c, Cj1564). In mice inoculated with an isolate of C. jejuni NCTC 11168-GSv from the infected person, the isolate underwent further genetic variation. At nine loci, mutations specific to inoculated mice including five SNP changes were observed. The two predominant SNPs observed in the human host reverted in mice. Genetic variations occurring in the genome of C. jejuni in mice corresponded to increased densities of C. jejuni cells associated with cecal mucosa. In conclusion, C. jejuni NCTC 11168-GSv was found to be highly virulent in a human being inciting severe enteritis. Host-specific mutations in the person with enteritis occurred/were selected for in the genome of C. jejuni, and many were not maintained in mice. Information obtained in the current study provides new information on host-specific genetic adaptation by C. jejuni.

References

[1]  Taboada EN, Ross SL, Mutschall SK, Mackinnon JM, Roberts MJ, et al. (2012) Development and validation of a comparative genomic fingerprinting method for high-resolution genotyping of Campylobacter jejuni. J Clin Microbiol 50: 788–797. doi: 10.1128/jcm.00669-11
[2]  McCarthy ND, Colles FM, Dingle KE, Bagnall MC, Manning G, et al. (2007) Host-associated genetic import in Campylobacter jejuni. Emerg Infect Dis 13: 267–272. doi: 10.3201/eid1302.060620
[3]  Ogden ID, Dallas JF, MacRae M, Rotariu O, Reay KW, et al. (2009) Campylobacter excreted into the environment by animal sources: prevalence, concentration shed, and host association. Foodborne Pathog Dis 6: 1161–1170. doi: 10.1089/fpd.2009.0327
[4]  Rotariu O, Dallas JF, Ogden ID, MacRae M, Sheppard SK, et al. (2009) Spatiotemporal homogeneity of Campylobacter subtypes from cattle and sheep across northeastern and southwestern Scotland. Appl Environ Microbiol 75: 6275–6281. doi: 10.1128/aem.00499-09
[5]  de Haan CP, Kivisto RI, Hakkinen M, Corander J, Hanninen ML (2010) Multilocus sequence types of Finnish bovine Campylobacter jejuni isolates and their attribution to human infections. BMC Microbiol 10: 200. doi: 10.1186/1471-2180-10-200
[6]  Sheppard SK, Colles F, Richardson J, Cody AJ, Elson R, et al. (2010) Host association of Campylobacter genotypes transcends geographic variation. Appl Environ Microbiol 76: 5269–5277. doi: 10.1128/aem.00124-10
[7]  Gripp E, Hlahla D, Didelot X, Kops F, Maurischat S, et al. (2011) Closely related Campylobacter jejuni strains from different sources reveal a generalist rather than a specialist lifestyle. BMC Genomics 12: 584. doi: 10.1186/1471-2164-12-584
[8]  Clark CG, Taboada E, Grant CC, Blakeston C, Pollari F, et al. (2012) Comparison of molecular typing methods useful for detecting clusters of Campylobacter jejuni and C. coli isolates through routine surveillance. J Clin Microbiol 50: 798–809. doi: 10.1128/jcm.05733-11
[9]  Skirrow MB (1977) Campylobacter enteritis: a “new” disease. Br Med J 2: 9–11. doi: 10.1136/bmj.2.6078.9
[10]  Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, et al. (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403: 665–668.
[11]  Taboada EN, Acedillo RR, Carrillo CD, Findlay WA, Medeiros DT, et al. (2004) Large-scale comparative genomics meta-analysis of Campylobacter jejuni isolates reveals low level of genome plasticity. J Clin Microbiol 42: 4566–4576. doi: 10.1128/jcm.42.10.4566-4576.2004
[12]  Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4: 203–221.
[13]  Gundogdu O, Bentley SD, Holden MT, Parkhill J, Dorrell N, et al. (2007) Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence. BMC Genomics 8: 162. doi: 10.1186/1471-2164-8-162
[14]  Wassenaar TM, Wagenaar JA, Rigter A, Fearnley C, Newell DG, et al. (2002) Homonucleotide stretches in chromosomal DNA of Campylobacter jejuni display high frequency polymorphism as detected by direct PCR analysis. FEMS Microbiol Lett 212: 77–85. doi: 10.1111/j.1574-6968.2002.tb11248.x
[15]  Ebert D (1998) Experimental evolution of parasites. Science 282: 1432–1435. doi: 10.1126/science.282.5393.1432
[16]  Slev PR, Potts WK (2002) Disease consequences of pathogen adaptation. Curr Opin Immunol 14: 609–614. doi: 10.1016/s0952-7915(02)00381-3
[17]  Jones MA, Marston KL, Woodall CA, Maskell DJ, Linton D, et al. (2004) Adaptation of Campylobacter jejuni NCTC11168 to high-level colonization of the avian gastrointestinal tract. Infect Immun 72: 3769–3776. doi: 10.1128/iai.72.7.3769-3776.2004
[18]  Ringoir DD, Korolik V (2003) Colonisation phenotype and colonisation potential differences in Campylobacter jejuni strains in chickens before and after passage in vivo. Vet Microbiol 92: 225–235. doi: 10.1016/s0378-1135(02)00378-4
[19]  Revez J, Schott T, Rossi M, Hanninen ML (2012) Complete genome sequence of a variant of Campylobacter jejuni NCTC 11168. J Bacteriol 194: 6298–6299. doi: 10.1128/jb.01385-12
[20]  Cooper KK, Cooper MA, Zuccolo A, Joens LA (2013) Re-sequencing of a virulent strain of Campylobacter jejuni NCTC11168 reveals potential virulence factors. Res Microbiol 164: 6–11. doi: 10.1016/j.resmic.2012.10.002
[21]  Gaynor EC, Cawthraw S, Manning G, MacKichan JK, Falkow S, et al. (2004) The genome-sequenced variant of Campylobacter jejuni NCTC 11168 and the original clonal clinical isolate differ markedly in colonization, gene expression, and virulence-associated phenotypes. J Bacteriol 186: 503–517. doi: 10.1128/jb.186.2.503-517.2004
[22]  Carrillo CD, Taboada E, Nash JH, Lanthier P, Kelly J, et al. (2004) Genome-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA. J Biol Chem 279: 20327–20338. doi: 10.1074/jbc.m401134200
[23]  Kim JS, Artymovich KA, Hall DF, Smith EJ, Fulton R, et al. (2012) Passage of Campylobacter jejuni through the chicken reservoir or mice promotes phase variation in contingency genes Cj0045 and Cj0170 that strongly associates with colonization and disease in a mouse model. Microbiology 158: 1304–1316. doi: 10.1099/mic.0.057158-0
[24]  Wilson DL, Rathinam VA, Qi W, Wick LM, Landgraf J, et al. (2010) Genetic diversity in Campylobacter jejuni is associated with differential colonization of broiler chickens and C57BL/6J IL10-deficient mice. Microbiology 156: 2046–2057. doi: 10.1099/mic.0.035717-0
[25]  Jerome JP, Bell JA, Plovanich-Jones AE, Barrick JE, Brown CT, et al. (2011) Standing genetic variation in contingency loci drives the rapid adaptation of Campylobacter jejuni to a novel host. PloS One 6: e16399. doi: 10.1371/journal.pone.0016399
[26]  Hendrixson DR (2006) A phase-variable mechanism controlling the Campylobacter jejuni FlgR response regulator influences commensalism. Mol Microbiol 61: 1646–1659. doi: 10.1111/j.1365-2958.2006.05336.x
[27]  Linton D, Gilbert M, Hitchen PG, Dell A, Morris HR, et al. (2000) Phase variation of a beta-1,3 galactosyltransferase involved in generation of the ganglioside GM1-like lipo-oligosaccharide of Campylobacter jejuni. Mol Microbiol 37: 501–514. doi: 10.1046/j.1365-2958.2000.02020.x
[28]  Cary SG, Blair EB (1964) New transport medium for shipment of clinical specimens. I. Fecal specimens. J Bacteriol 88: 96–98.
[29]  Nicholson MA, Patton CM (1995) Evaluation of disk method for hippurate hydrolysis by Campylobacter species. J Clin Microbiol 33: 1341–1343.
[30]  Linton D, Owen RJ, Stanley J (1996) Rapid identification by PCR of the genus Campylobacter and of five Campylobacter species enteropathogenic for man and animals. Res Microbiol 147: 707–718. doi: 10.1016/s0923-2508(97)85118-2
[31]  Inglis GD, Kalischuk LD (2003) Use of PCR for direct detection of Campylobacter species in bovine feces. Appl Environ Microbiol 69: 3435–3447. doi: 10.1128/aem.69.6.3435-3447.2003
[32]  Denis M, Soumet C, Rivoal K, Ermel G, Blivet D, et al. (1999) Development of a m-PCR assay for simultaneous identification of Campylobacter jejuni and C. coli. Lett Appl Microbiol 29: 406–410. doi: 10.1046/j.1472-765x.1999.00658.x
[33]  Inglis GD, Kalischuk LD (2004) Direct quantification of Campylobacter jejuni and Campylobacter lanienae in feces of cattle by real-time quantitative PCR. Appl Environ Microbiol 70: 2296–2306. doi: 10.1128/aem.70.4.2296-2306.2004
[34]  Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nature methods 9: 357–359. doi: 10.1038/nmeth.1923
[35]  Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079. doi: 10.1093/bioinformatics/btp352
[36]  Chevreux B, Wetter T, Suhai S (1999) Genome sequence assembly using trace signals and additional sequence information. Computer Science and Biology: Proceedings of the German Conference on Bioinformatics (GCB) 99: 45–56.
[37]  Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, et al. (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19: 1639–1645. doi: 10.1101/gr.092759.109
[38]  Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4: 363–371. doi: 10.1038/nprot.2009.2
[39]  Firczuk M, Mucha A, Bochtler M (2005) Crystal structures of active LytM. J Mol Biol 354: 578–590. doi: 10.1016/j.jmb.2005.09.082
[40]  Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66: 486–501. doi: 10.1107/s0907444910007493
[41]  Butzler JP (2004) Campylobacter, from obscurity to celebrity. Clin Microbiol Infect 10: 868–876. doi: 10.1111/j.1469-0691.2004.00983.x
[42]  Butzler JP (1982) Campylobacter enteritis. Infection 10 Suppl 2S67–69. doi: 10.1007/bf01640857
[43]  Tracz DM, Keelan M, Ahmed-Bentley J, Gibreel A, Kowalewska-Grochowska K, et al. (2005) pVir and bloody diarrhea in Campylobacter jejuni enteritis. Emerg Infect Dis 11: 838–843. doi: 10.3201/eid1106.041052
[44]  Louwen RP, van Belkum A, Wagenaar JA, Doorduyn Y, Achterberg R, et al. (2006) Lack of association between the presence of the pVir plasmid and bloody diarrhea in Campylobacter jejuni enteritis. J Clin Microbiol 44: 1867–1868. doi: 10.1128/jcm.44.5.1867-1868.2006
[45]  Gillespie IA, O'Brien S J, Frost JA, Tam C, Tompkins D, et al. (2006) Investigating vomiting and/or bloody diarrhoea in Campylobacter jejuni infection. J Med Microbiol 55: 741–746. doi: 10.1099/jmm.0.46422-0
[46]  Blaser MJ, Reller LB, Luechtefeld NW, Wang WL (1982) Campylobacter enteritis in Denver. West J Med 136: 287–290.
[47]  San Joaquin VH, Welch DF (1984) Campylobacter enteritis. A 3-year experience. Clin Pediatr (Phila) 23: 311–316. doi: 10.1177/000992288402300601
[48]  Chamovitz BN, Hartstein AI, Alexander SR, Terry AB, Short P, et al. (1983) Campylobacter jejuni-associated hemolytic-uremic syndrome in a mother and daughter. Pediatrics 71: 253–256.
[49]  Miles TA, Bird P, Bettelheim KA (1996) Haemolytic-uraemic syndrome in the Hunter: public health implications. Aust N Z J Public Health 20: 457–462. doi: 10.1111/j.1467-842x.1996.tb01621.x
[50]  Op den Winkel M, Gulberg V, Weiss M, Ebeling F, Gerbes AL, et al. (2010) Acute postinfectious glomerulonephritis associated with Campylobacter jejuni enteritis - a case report and review of the literature on C. jejuni's potential to trigger immunologically mediated renal disease. Clin Nephrol 74: 474–479.
[51]  Nguyen Y, Sperandio V (2012) Enterohemorrhagic E. coli (EHEC) pathogenesis. Front Cell Infect Microbiol 2: 90. doi: 10.3389/fcimb.2012.00090
[52]  Dasti JI, Tareen AM, Lugert R, Zautner AE, Gross U (2010) Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms. Int J Med Microbiol 300: 205–211. doi: 10.1016/j.ijmm.2009.07.002
[53]  Ahmed IH, Manning G, Wassenaar TM, Cawthraw S, Newell DG (2002) Identification of genetic differences between two Campylobacter jejuni strains with different colonization potentials. Microbiology 148: 1203–1212.
[54]  Hitchen P, Brzostek J, Panico M, Butler JA, Morris HR, et al. (2010) Modification of the Campylobacter jejuni flagellin glycan by the product of the Cj1295 homopolymeric-tract-containing gene. Microbiology 156: 1953–1962. doi: 10.1099/mic.0.038091-0
[55]  Mansfield LS, Bell JA, Wilson DL, Murphy AJ, Elsheikha HM, et al. (2007) C57BL/6 and congenic interleukin-10-deficient mice can serve as models of Campylobacter jejuni colonization and enteritis. Infect Immun 75: 1099–1115. doi: 10.1128/iai.00833-06
[56]  Haag LM, Fischer A, Otto B, Plickert R, Kuhl AA, et al. (2012) Campylobacter jejuni induces acute enterocolitis in gnotobiotic IL-10?/? mice via Toll-like-receptor-2 and -4 signaling. PloS One 7: e40761. doi: 10.1371/journal.pone.0040761
[57]  Haag LM, Fischer A, Otto B, Plickert R, Kuhl AA, et al. (2012) Intestinal microbiota shifts towards elevated commensal Escherichia coli loads abrogate colonization resistance against Campylobacter jejuni in mice. PloS One 7: e35988. doi: 10.1371/journal.pone.0035988
[58]  Bell JA, Jerome JP, Plovanich-Jones AE, Smith EJ, Gettings JR, et al. (2013) Outcome of infection of C57BL/6 IL-10(?/?) mice with Campylobacter jejuni strains is correlated with genome content of open reading frames up- and down-regulated in vivo. Microb Pathog 54: 1–19. doi: 10.1016/j.micpath.2012.08.001
[59]  Bell JA, St Charles JL, Murphy AJ, Rathinam VA, Plovanich-Jones AE, et al. (2009) Multiple factors interact to produce responses resembling spectrum of human disease in Campylobacter jejuni infected C57BL/6 IL-10?/? mice. BMC Microbiol 9: 57. doi: 10.1186/1471-2180-9-57
[60]  Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, et al. (1998) Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun 66: 5224–5231.
[61]  Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75: 263–274. doi: 10.1016/0092-8674(93)80068-p
[62]  Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, et al. (1993) Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75: 253–261. doi: 10.1016/0092-8674(93)80067-o
[63]  Ng TH, Britton GJ, Hill EV, Verhagen J, Burton BR, et al. (2013) Regulation of adaptive immunity; the role of interleukin-10. Front Immunol 4: 129. doi: 10.3389/fimmu.2013.00129
[64]  O'Garra A, Vieira P (2007) T(H)1 cells control themselves by producing interleukin-10. Nat Rev Immunol 7: 425–428. doi: 10.1038/nri2097
[65]  Saraiva M, O'Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10: 170–181. doi: 10.1038/nri2711
[66]  Mauri C, Bosma A (2012) Immune regulatory function of B cells. Annu Rev Immunol 30: 221–241. doi: 10.1146/annurev-immunol-020711-074934
[67]  Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, et al. (2006) Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 212: 28–50. doi: 10.1111/j.0105-2896.2006.00420.x
[68]  Rennick DM, Fort MM (2000) Lessons from genetically engineered animal models. XII. IL-10-deficient (IL-10(?/?) mice and intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 278: G829–833.
[69]  Collins CH, Kennedy DA (1999) Laboratory-acquired infections: history, incidence, causes and prevention: Butterworth Heinemann, Oxford, UK.
[70]  Friis C, Wassenaar TM, Javed MA, Snipen L, Lagesen K, et al. (2010) Genomic characterization of Campylobacter jejuni strain M1. PLoS One 5: e12253. doi: 10.1371/journal.pone.0012253
[71]  Manning G, Duim B, Wassenaar T, Wagenaar JA, Ridley A, et al. (2001) Evidence for a genetically stable strain of Campylobacter jejuni. Appl Environ Microbiol 67: 1185–1189. doi: 10.1128/aem.67.3.1185-1189.2001
[72]  Lone AG, Selinger LB, Uwiera RR, Xu Y, Inglis GD (2013) Campylobacter jejuni colonization Is associated with a dysbiosis in the cecal microbiota of mice in the absence of prominent inflammation. PloS One 8: e75325. doi: 10.1371/journal.pone.0075325

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133