Objective To examine the effects of Diet (D) and Exercise (E) interventions on cardiovascular fitness, waist circumference, blood lipids, glucose metabolism, inflammation markers, insulin-like growth factor 1 (IGF-1) and blood pressure in overweight and obese lactating women. Methods At 10–14 wk postpartum, 68 Swedish women with a self-reported pre-pregnancy BMI of 25–35 kg/m2 were randomized to a 12-wk behavior modification treatment with D, E, both or control using a 2×2 factorial design. The goal of D treatment was to reduce body weight by 0.5 kg/wk, accomplished by decreasing energy intake by 500 kcal/d and monitoring weight loss through self-weighing. The goal of E treatment was to perform 4 45-min walks per wk at 60–70% of max heart-rate using a heart-rate monitor. Effects were measured 12 wk and 1 y after randomization. General Linear Modeling was used to study main and interaction effects adjusted for baseline values of dependent variable. Results There was a significant main effect of the D treatment, decreasing waist circumference (P = 0.001), total cholesterol (P = 0.007), LDL-cholesterol (P = 0.003) and fasting insulin (P = 0.042), at the end of the 12-wk treatment. The decreased waist circumference (P<0.001) and insulin (P = 0.024) was sustained and HDL-cholesterol increased (P = 0.005) at the 1-y follow-up. No effects from the E treatment or any interaction effects were observed. Conclusions Dietary behavior modification that produced sustained weight loss among overweight and obese lactating women also improved risk factors for cardiovascular disease and type 2 diabetes. This intervention may not only reduce weight-related risks with future pregnancies but also long-term risk for metabolic disease. Trial registration ClinicalTrials.gov NCT01343238
References
[1]
Norberg M, Danielsson M (2012) Overweight, cardiovascular diseases and diabetes : Health in Sweden: The National Public Health Report 2012 Chapter 7. Scand J Public Health 40: 135–163. doi: 10.1177/1403494812459471
[2]
Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, et al. (2010) Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation 121: e46–e215. doi: 10.1161/circulationaha.109.192667
[3]
Schenck-Gustafsson K (2009) Risk factors for cardiovascular disease in women. Maturitas 63: 186–190. doi: 10.1016/j.maturitas.2009.02.014
[4]
Koski-Rahikkala H, Pouta A, Pietilainen K, Hartikainen AL (2006) Does parity affect mortality among parous women? J Epidemiol Community Health 60: 968–973. doi: 10.1136/jech.2005.044735
[5]
Lawlor DA, Emberson JR, Ebrahim S, Whincup PH, Wannamethee SG, et al. (2003) Is the association between parity and coronary heart disease due to biological effects of pregnancy or adverse lifestyle risk factors associated with child-rearing? Findings from the British Women’s Heart and Health Study and the British Regional Heart Study. Circulation 107: 1260–1264. doi: 10.1161/01.cir.0000053441.43495.1a
[6]
Zhang X, Shu XO, Gao YT, Yang G, Li H, et al. (2009) Pregnancy, childrearing, and risk of stroke in Chinese women. Stroke 40: 2680–2684. doi: 10.1161/strokeaha.109.547554
[7]
Gunderson EP, Jacobs DR Jr, Chiang V, Lewis CE, Tsai A, et al.. (2009) Childbearing is associated with higher incidence of the metabolic syndrome among women of reproductive age controlling for measurements before pregnancy: the CARDIA study. Am J Obstet Gynecol 201: 177 e171–179.
[8]
Gunderson EP (2009) Childbearing and obesity in women: weight before, during, and after pregnancy. Obstet Gynecol Clin North Am 36: 317–332, ix.
[9]
Gunderson EP, Lewis CE, Murtaugh MA, Quesenberry CP, Smith West D, et al. (2004) Long-term plasma lipid changes associated with a first birth: the Coronary Artery Risk Development in Young Adults study. Am J Epidemiol 159: 1028–1039. doi: 10.1093/aje/kwh146
[10]
Bastian LA, Pathiraja VC, Krause K, Namenek Brouwer RJ, Swamy GK, et al. (2010) Multiparity is associated with high motivation to change diet among overweight and obese postpartum women. Womens Health Issues 20: 133–138. doi: 10.1016/j.whi.2009.11.005
[11]
Bertz F, Sparud-Lundin C, Winkvist A (2013) Transformative Lifestyle Change: Key to Sustainable Weight Loss among Women in a Postpartum Diet and Exercise Intervention. Matern Child Nutr. Article first published online: 15 NOV 2013 DOI: 10.1111/mcn.12103.
[12]
Dewey KG, Lovelady CA, Nommsen-Rivers LA, McCrory MA, Lonnerdal B (1994) A randomized study of the effects of aerobic exercise by lactating women on breast-milk volume and composition. N Engl J Med 330: 449–453. doi: 10.1056/nejm199402173300701
[13]
Lovelady CA, Garner KE, Moreno KL, Williams JP (2000) The effect of weight loss in overweight, lactating women on the growth of their infants. N Engl J Med 342: 449–453. doi: 10.1056/nejm200002173420701
[14]
McCrory MA, Nommsen-Rivers LA, Mole PA, Lonnerdal B, Dewey KG (1999) Randomized trial of the short-term effects of dieting compared with dieting plus aerobic exercise on lactation performance. Am J Clin Nutr 69: 959–967.
[15]
Lovelady CA, Nommsen-Rivers LA, McCrory MA, Dewey KG (1995) Effects of exercise on plasma lipids and metabolism of lactating women. Med Sci Sports Exerc 27: 22–28. doi: 10.1249/00005768-199501000-00005
[16]
Stendell-Hollis NR, Thompson PA, West JL, Wertheim BC, Thomson CA (2013) A Comparison of Mediterranean-Style and MyPyramid Diets on Weight Loss and Inflammatory Biomarkers in Postpartum Breastfeeding Women. J Womens Health (Larchmt) 22: 48–57. doi: 10.1089/jwh.2012.3707
[17]
Bertz F, Brekke HK, Ellegard L, Rasmussen KM, Wennergren M, et al. (2012) Diet and exercise weight-loss trial in lactating overweight and obese women. Am J Clin Nutr 96: 698–705. doi: 10.3945/ajcn.112.040196
[18]
WHO (2008) WHO STEPwise approach to surveillance (STEPS). Guide to physical measurements (step 2). Geneva, World Health Organization (WHO).
[19]
Nordic Council of Ministers (2004) Nordic Nutrition Recommendations 2004. Integrating nutrition and physical activity. Copenhagen: Norden.
[20]
Fahraeus L, Larsson-Cohn U, Wallentin L (1985) Plasma lipoproteins including high density lipoprotein subfractions during normal pregnancy. Obstet Gynecol 66: 468–472.
[21]
Darmady JM, Postle AD (1982) Lipid metabolism in pregnancy. Br J Obstet Gynaecol 89: 211–215. doi: 10.1111/j.1471-0528.1982.tb03616.x
[22]
Dattilo AM, Kris-Etherton PM (1992) Effects of weight reduction on blood lipids and lipoproteins: a meta-analysis. Am J Clin Nutr 56: 320–328.
[23]
Gordon DJ, Probstfield JL, Garrison RJ, Neaton JD, Castelli WP, et al. (1989) High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 79: 8–15. doi: 10.1161/01.cir.79.1.8
[24]
Knopp RH, Walden CE, Wahl PW, Bergelin R, Chapman M, et al. (1985) Effect of postpartum lactation on lipoprotein lipids and apoproteins. J Clin Endocrinol Metab 60: 542–547. doi: 10.1210/jcem-60-3-542
[25]
Winkvist A, Bertz F, Ellegard L, Bosaeus I, Brekke HK (2013) Metabolic risk profile among overweight and obese lactating women in Sweden. PLoS One 8: e63629. doi: 10.1371/journal.pone.0063629
[26]
Tiikkainen M, Bergholm R, Rissanen A, Aro A, Salminen I, et al. (2004) Effects of equal weight loss with orlistat and placebo on body fat and serum fatty acid composition and insulin resistance in obese women. Am J Clin Nutr 79: 22–30.
[27]
Forsythe LK, Wallace JM, Livingstone MB (2008) Obesity and inflammation: the effects of weight loss. Nutr Res Rev 21: 117–133. doi: 10.1017/s0954422408138732
[28]
Groer MW, Davis MW, Smith K, Casey K, Kramer V, et al. (2005) Immunity, inflammation and infection in post-partum breast and formula feeders. Am J Reprod Immunol 54: 222–231. doi: 10.1111/j.1600-0897.2005.00301.x