Characterization of 65 Epitope-Specific Dystrophin Monoclonal Antibodies in Canine and Murine Models of Duchenne Muscular Dystrophy by Immunostaining and Western Blot
Epitope-specific monoclonal antibodies can provide unique insights for studying cellular proteins. Dystrophin is one of the largest cytoskeleton proteins encoded by 79 exons. The absence of dystrophin results in Duchenne muscular dystrophy (DMD). Over the last two decades, dozens of exon-specific human dystrophin monoclonal antibodies have been developed and successfully used for DMD diagnosis. Unfortunately, the majority of these antibodies have not been thoroughly characterized in dystrophin-deficient dogs, an outstanding large animal model for translational research. To fill the gap, we performed a comprehensive study on 65 dystrophin monoclonal antibodies in normal and dystrophic dogs (heart and skeletal muscle) by immunofluorescence staining and western blot. For comparison, we also included striated muscles from normal BL10 and dystrophin-null mdx mice. Our analysis revealed distinctive species, tissue and assay-dependent recognition patterns of different antibodies. Importantly, we identified 15 antibodies that can consistently detect full-length canine dystrophin in both immunostaining and western blot. Our results will serve as an important reference for studying DMD in the canine model.
References
[1]
Emery AEH, Muntoni F (2003) Duchenne muscular dystrophy. 3rd ed. Oxford; New York: Oxford University Press. x, 270.
[2]
Kunkel LM (2005) 2004 William Allan award address. cloning of the DMD gene. Am J Hum Genet 76: 205–214.
[3]
Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C, et al. (1987) Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50: 509–517. doi: 10.1016/0092-8674(87)90504-6
[4]
Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51: 919–928. doi: 10.1016/0092-8674(87)90579-4
[5]
Hoffman EP, Hudecki MS, Rosenberg PA, Pollina CM, Kunkel LM (1988) Cell and fiber-type distribution of dystrophin. Neuron 1: 411–420. doi: 10.1016/0896-6273(88)90191-2
[6]
Koenig M, Monaco AP, Kunkel LM (1988) The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53: 219–526. doi: 10.1016/0092-8674(88)90383-2
[7]
Koenig M, Kunkel LM (1990) Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility. J Biol Chem 265: 4560–4566.
Blake DJ, Weir A, Newey SE, Davies KE (2002) Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 82: 291–329.
[10]
Petrof BJ (2002) Molecular pathophysiology of myofiber injury in deficiencies of the dystrophin-glycoprotein complex. Am J Phys Med Rehabil 81: S162–174. doi: 10.1097/00002060-200211001-00017
[11]
Hoffman EP, Kunkel LM, Brown RH Jr (1988) Proteolytic fragment or new gene product? Nature 336: 210. doi: 10.1038/336210a0
[12]
Monaco AP, Bertelson CJ, Liechti-Gallati S, Moser H, Kunkel LM (1988) An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 2: 90–95. doi: 10.1016/0888-7543(88)90113-9
[13]
Hoffman EP, Fischbeck KH, Brown RH, Johnson M, Medori R, et al. (1988) Characterization of dystrophin in muscle-biopsy specimens from patients with Duchenne’s or Becker’s muscular dystrophy. N Engl J Med 318: 1363–1368. doi: 10.1056/nejm198805263182104
[14]
Arahata K, Hoffman EP, Kunkel LM, Ishiura S, Tsukahara T, et al. (1989) Dystrophin diagnosis: comparison of dystrophin abnormalities by immunofluorescence and immunoblot analyses. Proc Natl Acad Sci U S A 86: 7154–7158. doi: 10.1073/pnas.86.18.7154
[15]
Morris GE, Man NT, Sewry CA (2011) Monitoring duchenne muscular dystrophy gene therapy with epitope-specific monoclonal antibodies. Methods Mol Biol 709: 39–61. doi: 10.1007/978-1-61737-982-6_3
[16]
Ellis JM, Man NT, Morris GE, Ginjaar IB, Moorman AF, et al. (1990) Specificity of dystrophin analysis improved with monoclonal antibodies. Lancet 336: 881–882. doi: 10.1016/0140-6736(90)92392-u
[17]
Nguyen TM, Morris GE (1993) Use of epitope libraries to identify exon-specific monoclonal antibodies for characterization of altered dystrophins in muscular dystrophy. Am J Hum Genet 52: 1057–1066.
[18]
Hugnot JP, Gilgenkrantz H, Vincent N, Chafey P, Morris GE, et al. (1992) Distal transcript of the dystrophin gene initiated from an alternative first exon and encoding a 75-kDa protein widely distributed in nonmuscle tissues. Proc Natl Acad Sci U S A 89: 7506–7510. doi: 10.1073/pnas.89.16.7506
[19]
Lederfein D, Levy Z, Augier N, Augier N, Mornet D, et al. (1992) A 71-kilodalton protein is a major product of the Duchenne muscular dystrophy gene in brain and other nonmuscle tissues. Proc Natl Acad Sci U S A 89: 5346–5350. doi: 10.1073/pnas.89.12.5346
[20]
Thanh LT, Nguyen TM, Helliwell TR, Morris GE (1995) Characterization of revertant muscle fibers in Duchenne muscular dystrophy, using exon-specific monoclonal antibodies against dystrophin. Am J Hum Genet 56: 725–731.
[21]
Partridge T, Lu QL, Morris GE, Hoffman E (1998) Is myoblast transplantation effective? Nature medicine 4: 1208–1209. doi: 10.1038/3167
[22]
Nguyen thi M, Cartwright AJ, Morris GE, Love DR, Bloomfield JF, et al. (1990) Monoclonal antibodies against defined regions of the muscular dystrophy protein, dystrophin. FEBS Lett 262: 237–240. doi: 10.1016/0014-5793(90)80199-s
[23]
Duan D (2011) Duchenne muscular dystrophy gene therapy: lost in translation? Resarch and Report in Biology 2: 31–42. doi: 10.2147/rrb.s13463
[24]
Fine DM, Shin JH, Yue Y, Volkmann D, Leach SB, et al. (2011) Age-matched comparison reveals early electrocardiography and echocardiography changes in dystrophin-deficient dogs. Neuromuscul Disord 21: 453–461. doi: 10.1016/j.nmd.2011.03.010
[25]
Smith BF, Yue Y, Woods PR, Kornegay JN, Shin JH, et al. (2011) An intronic LINE-1 element insertion in the dystrophin gene aborts dystrophin expression and results in Duchenne-like muscular dystrophy in the corgi breed. Lab Invest 91: 216–231. doi: 10.1038/labinvest.2010.146
[26]
Yang HT, Shin JH, Hakim CH, Pan X, Terjung RL, et al. (2012) Dystrophin deficiency compromises force production of the extensor carpi ulnaris muscle in the canine model of Duchenne muscular dystrophy. PLoS ONE 7: e44438. doi: 10.1371/journal.pone.0044438
[27]
Shin JH, Greer B, Hakim CH, Zhou Z, Chung YC, et al. (2013) Quantitative phenotyping of Duchenne muscular dystrophy dogs by comprehensive gait analysis and overnight activity monitoring. PLoS One 8: e59875. doi: 10.1371/journal.pone.0059875
[28]
Nguyen TM, Morris GE (1996) Production of panels of monoclonal antibodies by the hybridoma method. Methods Mol Biol 66: 377–389. doi: 10.1385/0-89603-375-9:377
[29]
Lam LT, Nguyen GH, Nguyen TM, Sewry CA, Morris GE (2010) Exon-specific dystrophin antibodies for studies of Duchenne muscular dystrophy. Translational Neuroscience 1: 233–237. doi: 10.2478/v10134-010-0034-7
[30]
Lu QL, Partridge TA (1998) A new blocking method for application of murine monoclonal antibody to mouse tissue sections. J Histochem Cytochem 46: 977–984. doi: 10.1177/002215549804600813
[31]
Bordeaux J, Welsh A, Agarwal S, Killiam E, Baquero M, et al. (2010) Antibody validation. BioTechniques 48: 197–209. doi: 10.2144/000113382
[32]
Marx V (2013) Finding the right antibody for the job. Nature Methods 10: 703–707. doi: 10.1038/nmeth.2570
[33]
Lai Y, Thomas GD, Yue Y, Yang HT, Li D, et al. (2009) Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. J Clin Invest 119: 624–635. doi: 10.1172/jci36612
[34]
Lai Y, Zhao J, Yue Y, Duan D (2013) alpha2 and alpha3 helices of dystrophin R16 and R17 frame a microdomain in the alpha1 helix of dystrophin R17 for neuronal NOS binding. Proc Natl Acad Sci U S A 110: 525–530. doi: 10.1073/pnas.1211431109
[35]
Wang B, Li J, Qiao C, Chen C, Hu P, et al. (2008) A canine minidystrophin is functional and therapeutic in mdx mice. Gene Ther 15: 1099–1106. doi: 10.1038/gt.2008.70
[36]
‘t Hoen PA, de Meijer EJ, Boer JM, Vossen RH, Turk R, et al. (2008) Generation and characterization of transgenic mice with the full-length human DMD gene. J Biol Chem 283: 5899–5907. doi: 10.1074/jbc.m709410200
[37]
Morris GE, Sedgwick SG, Ellis JM, Pereboev A, Chamberlain JS, et al. (1998) An epitope structure for the C-terminal domain of dystrophin and utrophin. Biochemistry 37: 11117–11127. doi: 10.1021/bi9805137
[38]
Nguyen TM, Ginjaar IB, van Ommen GJ, Morris GE (1992) Monoclonal antibodies for dystrophin analysis. Epitope mapping and improved binding to SDS-treated muscle sections. Biochem J 288 (Pt 2): 663–668.
[39]
Kull FC Jr, Jacobs S, Su YF, Cuatrecasas P (1982) A monoclonal antibody to human insulin receptor. Biochem Biophys Res Commun 106: 1019–1026. doi: 10.1016/0006-291x(82)91813-7
[40]
Hoffman EP, Beggs AH, Koenig M, Kunkel LM, Angelini C (1989) Cross-reactive protein in Duchenne muscle. Lancet 2: 1211–1212. doi: 10.1016/s0140-6736(89)91812-6
[41]
Nguyen TM, Ellis JM, Love DR, Davies KE, Gatter KC, et al. (1991) Localization of the DMDL gene-encoded dystrophin-related protein using a panel of nineteen monoclonal antibodies: presence at neuromuscular junctions, in the sarcolemma of dystrophic skeletal muscle, in vascular and other smooth muscles, and in proliferating brain cell lines. J Cell Biol 115: 1695–1700. doi: 10.1083/jcb.115.6.1695
[42]
Li D, Bareja A, Judge L, Yue Y, Lai Y, et al. (2010) Sarcolemmal nNOS anchoring reveals a qualitative difference between dystrophin and utrophin. J Cell Sci 123: 2008–2013. doi: 10.1242/jcs.064808
[43]
Birmingham K (1997) Controversial muscular dystrophy therapy goes to court. Nature medicine 3: 1058. doi: 10.1038/nm1097-1058a