全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Pleiotrophin Commits Human Bone Marrow Mesenchymal Stromal Cells towards Hypertrophy during Chondrogenesis

DOI: 10.1371/journal.pone.0088287

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pleiotrophin (PTN) is a growth factor present in the extracellular matrix of the growth plate during bone development and in the callus during bone healing. Bone healing is a complicated process that recapitulates endochondral bone development and involves many cell types. Among those cells, mesenchymal stromal cells (MSC) are able to differentiate toward chondrogenic and osteoblastic lineages. We aimed to determine PTN effects on differentiation properties of human bone marrow stromal cells (hBMSC) under chondrogenic induction using histological analysis and quantitative reverse transcription polymerase chain reaction. PTN dramatically potentiated chondrogenic differentiation as indicated by a strong increase of collagen 2 protein, and cartilage-related gene expression. Moreover, PTN increased transcription of hypertrophic chondrocyte markers such as MMP13, collagen 10 and alkaline phosphatase and enhanced calcification and the content of collagen 10 protein. These effects are dependent on PTN receptors signaling and PI3 K pathway activation. These data suggest a new role of PTN in bone regeneration as an inducer of hypertrophy during chondrogenic differentiation of hBMSC.

References

[1]  Schindeler A, McDonald MM, Bokko P, Little DG (2008) Bone remodeling during fracture repair: The cellular picture. Semin Cell Dev Biol 19: 459–466. doi: 10.1016/j.semcdb.2008.07.004
[2]  Olsen BR, Reginato AM, Wang W (2000) Bone development. Annu Rev Cell Dev Biol 16: 191–220. doi: 10.1146/annurev.cellbio.16.1.191
[3]  Wilson S, Hashamiyan S, Clarke L, Saftig P, Mort J, et al. (2009) Glycosaminoglycan-mediated loss of cathepsin K collagenolytic activity in MPS I contributes to osteoclast and growth plate abnormalities. Am J Pathol 175: 2053–2062. doi: 10.2353/ajpath.2009.090211
[4]  Bielby R, Jones E, McGonagle D (2007) The role of mesenchymal stem cells in maintenance and repair of bone. Injury 38 Suppl 1S26–32. doi: 10.1016/j.injury.2007.02.007
[5]  Schipani E, Kronenberg HM (2008) Adult mesenchymal stem cells.
[6]  Courty J, Dauchel MC, Caruelle D, Perderiset M, Barritault D (1991) Mitogenic properties of a new endothelial cell growth factor related to pleiotrophin. Biochem Biophys Res Commun 180: 145–151. doi: 10.1016/s0006-291x(05)81267-7
[7]  Merenmies J, Rauvala H (1990) Molecular cloning of the 18-kDa growth-associated protein of developing brain. J Biol Chem 265: 16721–16724.
[8]  Tezuka K, Takeshita S, Hakeda Y, Kumegawa M, Kikuno R, et al. (1990) Isolation of mouse and human cDNA clones encoding a protein expressed specifically in osteoblasts and brain tissues. Biochem Biophys Res Commun 173: 246–251. doi: 10.1016/s0006-291x(05)81048-4
[9]  Stoica GE, Kuo A, Powers C, Bowden ET, Sale EB, et al. (2002) Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J Biol Chem 277: 35990–35998. doi: 10.1074/jbc.m205749200
[10]  Raulo E, Chernousov MA, Carey DJ, Nolo R, Rauvala H (1994) Isolation of a neuronal cell surface receptor of heparin binding growth-associated molecule (HB-GAM). Identification as N-syndecan (syndecan-3). J Biol Chem 269: 12999–13004. doi: 10.1016/0304-3940(94)11551-1
[11]  Maeda N, Nishiwaki T, Shintani T, Hamanaka H, Noda M (1996) 6B4 proteoglycan/phosphacan, an extracellular variant of receptor-like protein-tyrosine phosphatase zeta/RPTPbeta, binds pleiotrophin/heparin-binding growth-associated molecule (HB-GAM). J Biol Chem 271: 21446–21452. doi: 10.1074/jbc.271.35.21446
[12]  Mitsiadis TA, Salmivirta M, Muramatsu T, Muramatsu H, Rauvala H, et al. (1995) Expression of the heparin-binding cytokines, midkine (MK) and HB-GAM (pleiotrophin) is associated with epithelial-mesenchymal interactions during fetal development and organogenesis. Development 121: 37–51.
[13]  Vanderwinden JM, Mailleux P, Schiffmann SN, Vanderhaeghen JJ (1992) Cellular distribution of the new growth factor pleiotrophin (HB-GAM) mRNA in developing and adult rat tissues. Anat Embryol (Berl) 186: 387–406. doi: 10.1007/bf00185989
[14]  Rauvala H (1989) An 18-kd heparin-binding protein of developing brain that is distinct from fibroblast growth factors. EMBO J 8: 2933–2941.
[15]  Perez-Pinera P, Berenson JR, Deuel TF (2008) Pleiotrophin, a multifunctional angiogenic factor: mechanisms and pathways in normal and pathological angiogenesis. Curr Opin Hematol 15: 210–214. doi: 10.1097/moh.0b013e3282fdc69e
[16]  Dreyfus J, Brunet-de Carvalho N, Duprez D, Raulais D, Vigny M (1998) HB-GAM/pleiotrophin: localization of mRNA and protein in the chicken developing leg. Int J Dev Biol 42: 189–198.
[17]  Petersen W, Rafii M (2001) Immunolocalization of the angiogenetic factor pleiotrophin (PTN) in the growth plate of mice. Arch Orthop Trauma Surg 121: 414–416. doi: 10.1007/s004020000246
[18]  Imai S, Kaksonen M, Raulo E, Kinnunen T, Fages C, et al. (1998) Osteoblast recruitment and bone formation enhanced by cell matrix-associated heparin-binding growth-associated molecule (HB-GAM). J Cell Biol 143: 1113–1128. doi: 10.1083/jcb.143.4.1113
[19]  Tapp H, Hernandez DJ, Neame PJ, Koob TJ (1999) Pleiotrophin inhibits chondrocyte proliferation and stimulates proteoglycan synthesis in mature bovine cartilage. Matrix Biol 18: 543–556. doi: 10.1016/s0945-053x(99)00049-9
[20]  Dreyfus J, Brunet-de Carvalho N, Duprez D, Raulais D, Vigny M (1998) HB-GAM/pleiotrophin but not RIHB/midkine enhances chondrogenesis in micromass culture. Exp Cell Res 241: 171–180. doi: 10.1006/excr.1998.4040
[21]  Yang X, Tare RS, Partridge KA, Roach HI, Clarke NM, et al. (2003) Induction of human osteoprogenitor chemotaxis, proliferation, differentiation, and bone formation by osteoblast stimulating factor-1/pleiotrophin: osteoconductive biomimetic scaffolds for tissue engineering. J Bone Miner Res 18: 47–57. doi: 10.1359/jbmr.2003.18.1.47
[22]  Tare RS, Oreffo RO, Clarke NM, Roach HI (2002) Pleiotrophin/Osteoblast-stimulating factor 1: dissecting its diverse functions in bone formation. J Bone Miner Res 17: 2009–2020. doi: 10.1359/jbmr.2002.17.11.2009
[23]  Tare RS, Oreffo RO, Sato K, Rauvala H, Clarke NM, et al. (2002) Effects of targeted overexpression of pleiotrophin on postnatal bone development. Biochem Biophys Res Commun 298: 324–332. doi: 10.1016/s0006-291x(02)02456-7
[24]  Lehmann W, Schinke T, Schilling AF, Catala-Lehnen P, Gebauer M, et al. (2004) Absence of mouse pleiotrophin does not affect bone formation in vivo. Bone 35: 1247–1255. doi: 10.1016/j.bone.2004.08.017
[25]  Imai S, Heino TJ, Hienola A, Kurata K, Buki K, et al. (2009) Osteocyte-derived HB-GAM (pleiotrophin) is associated with bone formation and mechanical loading. Bone 44: 785–794. doi: 10.1016/j.bone.2009.01.004
[26]  Chevallier N, Anagnostou F, Zilber S, Bodivit G, Maurin S, et al. (2010) Osteoblastic differentiation of human mesenchymal stem cells with platelet lysate. Biomaterials 31: 270–278. doi: 10.1016/j.biomaterials.2009.09.043
[27]  Barbosa I, Garcia S, Barbier-Chassefiere V, Caruelle JP, Martelly I, et al. (2003) Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies. Glycobiology 13: 647–653. doi: 10.1093/glycob/cwg082
[28]  Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132: 365–386. doi: 10.1385/1-59259-192-2:365
[29]  Knudson CB, Knudson W (2001) Cartilage proteoglycans. Semin Cell Dev Biol 12: 69–78. doi: 10.1006/scdb.2000.0243
[30]  Polykratis A, Katsoris P, Courty J, Papadimitriou E (2005) Characterization of heparin affin regulatory peptide signaling in human endothelial cells. J Biol Chem 280: 22454–22461. doi: 10.1074/jbc.m414407200
[31]  Ikegami D, Akiyama H, Suzuki A, Nakamura T, Nakano T, et al. (2011) Sox9 sustains chondrocyte survival and hypertrophy in part through Pik3ca-Akt pathways. Development 138: 1507–1519. doi: 10.1242/dev.057802
[32]  Petersen W, Wildemann B, Pufe T, Raschke M, Schmidmaier G (2004) The angiogenic peptide pleiotrophin (PTN/HB-GAM) is expressed in fracture healing: an immunohistochemical study in rats. Arch Orthop Trauma Surg 124: 603–607. doi: 10.1007/s00402-003-0582-0
[33]  Weiss S, Zimmermann G, Pufe T, Varoga D, Henle P (2009) The systemic angiogenic response during bone healing. Arch Orthop Trauma Surg 129: 989–997. doi: 10.1007/s00402-008-0777-5
[34]  Sato Y, Takita H, Ohata N, Tamura M, Kuboki Y (2002) Pleiotrophin regulates bone morphogenetic protein (BMP)-induced ectopic osteogenesis. J Biochem 131: 877–886. doi: 10.1093/oxfordjournals.jbchem.a003178
[35]  Seghatoleslami MR, Kosher RA (1996) Inhibition of in vitro limb cartilage differentiation by syndecan-3 antibodies. Dev Dyn 207: 114–119. doi: 10.1002/(sici)1097-0177(199609)207:1<114::aid-aja11>3.0.co;2-0
[36]  Schinke T, Gebauer M, Schilling AF, Lamprianou S, Priemel M, et al. (2008) The protein tyrosine phosphatase Rptpzeta is expressed in differentiated osteoblasts and affects bone formation in mice. Bone 42: 524–534. doi: 10.1016/j.bone.2007.11.009
[37]  Meng K, Rodriguez-Pena A, Dimitrov T, Chen W, Yamin M, et al. (2000) Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta. Proc Natl Acad Sci U S A 97: 2603–2608. doi: 10.1073/pnas.020487997
[38]  Chen M, Zhu M, Awad H, Li TF, Sheu TJ, et al. (2008) Inhibition of beta-catenin signaling causes defects in postnatal cartilage development. J Cell Sci 121: 1455–1465. doi: 10.1242/jcs.020362
[39]  Fukai A, Kawamura N, Saito T, Oshima Y, Ikeda T, et al. (2010) Akt1 in murine chondrocytes controls cartilage calcification during endochondral ossification under physiologic and pathologic conditions. Arthritis Rheum 62: 826–836. doi: 10.1002/art.27296
[40]  Perez-Pinera P, Zhang W, Chang Y, Vega JA, Deuel TF (2007) Anaplastic lymphoma kinase is activated through the pleiotrophin/receptor protein-tyrosine phosphatase beta/zeta signaling pathway: an alternative mechanism of receptor tyrosine kinase activation. J Biol Chem 282: 28683–28690. doi: 10.1074/jbc.m704505200
[41]  Pfander D, Swoboda B, Kirsch T (2001) Expression of early and late differentiation markers (proliferating cell nuclear antigen, syndecan-3, annexin VI, and alkaline phosphatase) by human osteoarthritic chondrocytes. Am J Pathol 159: 1777–1783. doi: 10.1016/s0002-9440(10)63024-6
[42]  Couchman JR (2010) Transmembrane signaling proteoglycans. Annu Rev Cell Dev Biol 26: 89–114. doi: 10.1146/annurev-cellbio-100109-104126

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133