全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

The Neurogenic Effects of Exogenous Neuropeptide Y: Early Molecular Events and Long-Lasting Effects in the Hippocampus of Trimethyltin-Treated Rats

DOI: 10.1371/journal.pone.0088294

Full-Text   Cite this paper   Add to My Lib

Abstract:

Modulation of endogenous neurogenesis is regarded as a promising challenge in neuroprotection. In the rat model of hippocampal neurodegeneration obtained by Trimethyltin (TMT) administration (8 mg/kg), characterised by selective pyramidal cell loss, enhanced neurogenesis, seizures and cognitive impairment, we previously demonstrated a proliferative role of exogenous neuropeptide Y (NPY), on dentate progenitors in the early phases of neurodegeneration. To investigate the functional integration of newly-born neurons, here we studied in adult rats the long-term effects of intracerebroventricular administration of NPY (2 μg/2 μl, 4 days after TMT-treatment), which plays an adjuvant role in neurodegeneration and epilepsy. Our results indicate that 30 days after NPY administration the number of new neurons was still higher in TMT+NPY-treated rats than in control+saline group. As a functional correlate of the integration of new neurons into the hippocampal network, long-term potentiation recorded in Dentate Gyrus (DG) in the absence of GABAA receptor blockade was higher in the TMT+NPY-treated group than in all other groups. Furthermore, qPCR analysis of Kruppel-like factor 9, a transcription factor essential for late-phase maturation of neurons in the DG, and of the cyclin-dependent kinase 5, critically involved in the maturation and dendrite extension of newly-born neurons, revealed a significant up-regulation of both genes in TMT+NPY-treated rats compared with all other groups. To explore the early molecular events activated by NPY administration, the Sonic Hedgehog (Shh) signalling pathway, which participates in the maintenance of the neurogenic hippocampal niche, was evaluated by qPCR 1, 3 and 5 days after NPY-treatment. An early significant up-regulation of Shh expression was detected in TMT+NPY-treated rats compared with all other groups, associated with a modulation of downstream genes. Our data indicate that the neurogenic effect of NPY administration during TMT-induced neurodegeneration involves early Shh pathway activation and results in a functional integration of newly-generated neurons into the local circuit.

References

[1]  Balu DT, Lucki I (2009) Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology. Neurosci Biobehav Rev 33: 232–252. doi: 10.1016/j.neubiorev.2008.08.007
[2]  Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27: 447–452. doi: 10.1016/j.tins.2004.05.013
[3]  Podda MV, Piacentini R, Barbati SA, Mastrodonato A, Puzzo D, et al. (2013) Role of cyclic nucleotide-gated channels in the modulation of mouse hippocampal neurogenesis. PLoS One PLoS ONE 8: e73246. doi: 10.1371/journal.pone.0073246
[4]  Parent JM, Kron MM (2012) Neurogenesis and Epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper’s Basic Mechanisms of the Epilepsies [Internet]. 4th edition. Bethesda (MD): National Center for Biotechnology Information (US).
[5]  Gray WP (2008) Neuropeptide Y signalling on hippocampal stem cells in health and disease. Mol Cell Endocrinol 288: 52–62. doi: 10.1016/j.mce.2008.02.021
[6]  Malva JO, Xapelli S, Baptista S, Valero J, Agasse F, et al. (2012) Multifaces of neuropeptide Y in the brain-neuroprotection, neurogenesis and neuroinflammation. Neuropeptides 46: 299–308. doi: 10.1016/j.npep.2012.09.001
[7]  Decressac M, Barker RA (2012) Neuropeptide Y and its role in CNS disease and repair. Exp Neurol 238: 265–272. doi: 10.1016/j.expneurol.2012.09.004
[8]  Sperk G, Hamilton T, Colmers WF (2007) Neuropeptide Y in the dentate gyrus. Prog Brain Res 163: 285–297. doi: 10.1016/s0079-6123(07)63017-9
[9]  Howell OW, Scharfman HE, Herzog H, Sundstrom LE, Beck-Sickinger AG, et al. (2003) Neuropeptide Y is proliferative for post-natal hippocampal precursor cells. J Neurochem 86: 646–659. doi: 10.1046/j.1471-4159.2003.01895.x
[10]  Howell OW, Doyle K, Goodman JH, Scharfman HE, Herzog H, et al. (2005) Neuropeptide Y stimulates of neural precursor proliferation in the post-natal and adult dentate gyrus. J Neurochem 93: 560–570. doi: 10.1111/j.1471-4159.2005.03057.x
[11]  Howell OW, Silva S, Scharfman HE, Sosunov AA, Zaben M, et al. (2007) Neuropeptide Y is important for basal and seizure-induced precursor cell proliferation in the hippocampus. Neurobiol Dis 26: 174–188. doi: 10.1016/j.nbd.2012.06.006
[12]  Decressac M, Wright B, David B, Tyers P, Jaber M, et al. (2010) Exogenous Neuropeptide Y promotes in vivo hippocampal neurogenesis. Hippocampus 21: 233–238. doi: 10.1002/hipo.20765
[13]  Decressac M, Wright B, Tyers P, Gaillard A, Barker RA (2010) Neuropeptide Y modifies the disease course in the R6/2 transgenic model of Huntington’s disease. Exp Neurol 226: 24–32. doi: 10.1016/j.expneurol.2010.07.022
[14]  Vezzani A, Sperk G, Colmers WF (1999) Neuropeptide Y: emerging evidence for a functional role in seizure modulation. Trends Neurosci 22: 25–30. doi: 10.1016/s0166-2236(98)01284-3
[15]  Vezzani A, Sperk G (2004) Overexpression of NPY and Y2 receptors in epileptic brain tissue: an endogenous neuroprotective mechanism in temporal lobe epilepsy? Neuropeptides 38: 245–252. doi: 10.1016/j.npep.2004.05.004
[16]  Smia?owska M, Domin H, Zieba B, Ko?niewska E, Michalik R, et al. (2009) Neuroprotective effects of neuropeptide Y-Y2 and Y5 receptor agonists in vitro and in vivo. Neuropeptides 43: 235–249. doi: 10.1016/j.npep.2009.02.002
[17]  Geloso MC, Corvino V, Michetti F (2011) Trimethyltin-induced hippocampal degeneration as a tool to investigate neurodegenerative processes. Neurochem Int 58: 729–738. doi: 10.1016/j.neuint.2011.03.009
[18]  Corvino V, Marchese E, Michetti F, Geloso MC (2013) Neuroprotective strategies in hippocampal neurodegeneration induced by the neurotoxicant trimethyltin. Neurochem Res 38: 240–253. doi: 10.1007/s11064-012-0932-9
[19]  Tsunashima K, Sadamatsu M, Takahashi Y, Kato N, Sperk G (1998) Trimethyltin intoxication induces marked changes in neuropeptide expression in the rat Hippocampus. Synapse 29: 333–342. doi: 10.1002/(sici)1098-2396(199808)29:4<333::aid-syn5>3.0.co;2-6
[20]  Ishikura N, Tsunashima K, Watanabe K, Nishimura T, Minabe Y, et al. (2002) Neuropeptide Y and somatostatin participate differently in the seizure-generating mechanisms following trimethyltin- induced hippocampal damage. Neurosci Res 44: 237–248. doi: 10.1016/s0168-0102(02)00132-3
[21]  Geloso MC, Vinesi P, Michetti F (1996) Parvalbumin-immunoreactive neurons are not affected by trimethyltin-induced neurodegeneration in the rat hippocampus. Exp Neurol 139: 269–277. doi: 10.1006/exnr.1996.0100
[22]  Geloso MC, Vinesi P, Michetti F (1997) Calretinin-containing neurons in trimethyltin-induced neurodegeneration in the rat hippocampus. An immunocytochemical study. Exp Neurol 146: 67–73. doi: 10.1006/exnr.1997.6491
[23]  Geloso MC, Vinesi P, Michetti F (1998) Neuronal subpopulations of developing rat hippocampus containing different calcium-binding proteins behave distinctively in trimethyltin-induced neurodegeneration. Exp Neurol 154: 645–653. doi: 10.1006/exnr.1998.6949
[24]  Piacentini R, Gangitano C, Ceccariglia S, Del Fa’ A, Azzena GB, et al. (2008) Dysregulation of intracellular calcium homeostasis is responsible for neuronal death in an experimental model of selective hippocampal degeneration induced by trimethyltin. J Neurochem 105: 2109–2121. doi: 10.1111/j.1471-4159.2008.05297.x
[25]  Latini L, Geloso MC, Corvino V, Giannetti S, Florenzano F, et al. (2010) Trimethyltin intoxication up-regulates nitric oxide synthase in neurons and purinergic ionotropic receptor 2 in astrocytes in the hippocampus. J Neurosci Res 88: 500–509. doi: 10.1002/jnr.22238
[26]  Geloso MC, Corvino V, Cavallo V, Toesca A, Guadagni E, et al. (2004) Expression of astrocytic nestin in the rat hippocampus during trimethyltin-induced neurodegeneration. Neurosci Lett 357: 103–106. doi: 10.1016/j.neulet.2003.11.076
[27]  Brabeck C, Michetti F, Geloso MC, Corvino V, Goezalan F, et al. (2002) Expression of EMAP-II by activated monocytes/microglial cells in different regions of the rat hippocampus after trimethyltin-induced brain damage. Exp Neurol 177: 341–346. doi: 10.1006/exnr.2002.7985
[28]  Pompili E, Nori SL, Geloso MC, Guadagni E, Corvino V, et al. (2004) Trimethyltin-induced differential expression of PAR subtypes in reactive astrocytes of the rat hippocampus. Brain Res Mol Brain Res 122: 93–98. doi: 10.1016/j.molbrainres.2003.12.001
[29]  Harry GJ, Lefebvre d’Hellencourt C, McPherson CA, Funk JA, Aoyama M, et al. (2008) Tumor necrosis factor p55 and p75 receptors are involved in chemical-induced apoptosis of dentate granule neurons. J Neurochem 106: 281–298. doi: 10.1111/j.1471-4159.2008.05382.x
[30]  Corvino V, Geloso MC, Cavallo V, Guadagni E, Passalacqua R, et al. (2005) Enhanced neurogenesis during trimethyltin-induced neurodegeneration in the hippocampus of the adult rat. Brain Res 65: 471–477. doi: 10.1016/j.brainresbull.2005.02.031
[31]  Florea AM, Splettstoesser F, Dopp E, Rettenmeier AW, Büsselberg D (2005) Modulation of intracellular calcium homeostasis by trimethyltin chloride in human tumour cells: neuroblastoma SY5Y and cervix adenocarcinoma HeLa S3. Toxicology 216: 1–8. doi: 10.1016/j.tox.2005.05.029
[32]  Florea AM, Dopp E, Büsselberg D (2005) Elevated Ca2+(i) transients induced by trimethyltin chloride in HeLa cells: types and levels of response. Cell Calcium 37: 251–258. doi: 10.1016/j.ceca.2004.10.005
[33]  Lattanzi W, Corvino V, Di Maria V, Michetti F, Geloso MC (2013) Gene expression profiling as a tool to investigate the molecular machinery activated during hippocampal neurodegeneration induced by trimethyltin (TMT) administration. Int J Mol Sci 14: 16817–16835. doi: 10.3390/ijms140816817
[34]  Corvino V, Marchese E, Giannetti S, Lattanzi W, Bonvissuto D, et al. (2012) The neuroprotective and neurogenic effects of neuropeptide Y administration in an animal model of hippocampal neurodegeneration and temporal lobe epilepsy induced by trimethyltin. J Neurochem 122: 415–426. doi: 10.1111/j.1471-4159.2012.07770.x
[35]  Breunig JJ, Sarkisian MR, Arellano JI, Morozov YM, Ayoub AE, et al. (2008) Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. Proc Natl Acad Sci USA 105: 13127–13132. doi: 10.1073/pnas.0804558105
[36]  Ruiz IAA, Palma V, Dahmane N (2002) Hedgehog-Gli signalling and the growth of the brain. Nat Rev Neurosci 3: 24–33. doi: 10.1038/nrn704
[37]  Lai K, Kaspar BK, Gage FH, Schaffer DV (2003) Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci 6: 21–27. doi: 10.1038/nn983
[38]  Nagase T, Nagase M, Yoshimura K, Fujita T, Koshima I (2005) Angiogenesis within the developing mouse neural tube is dependent on sonic hedgehog signaling: possible roles of motor neurons. Genes Cells 10: 595–604. doi: 10.1111/j.1365-2443.2005.00861.x
[39]  Han YG, Spassky N, Romaguera-Ros M, Garcia-Verdugo JM, Aguilar A, et al. (2008) Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat Neurosci 11: 277–284. doi: 10.1038/nn2059
[40]  Traiffort E, Angot E, Ruat M (2010) Sonic Hedgehog signaling in the mammalian brain. J Neurochem 113: 576–590. doi: 10.1111/j.1471-4159.2010.06642.x
[41]  Sasai N, Briscoe J (2012) Primary cilia and graded Sonic Hedgehog signaling. Wiley Interdiscip Rev Dev Biol 1: 753–772. doi: 10.1002/wdev.43
[42]  Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd ed. Academic Press, San Diego.
[43]  Markakis EA, Gage FH (1999) Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J Comp Neurol 406: 449–460. doi: 10.1002/(sici)1096-9861(19990419)406:4<449::aid-cne3>3.0.co;2-i
[44]  West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231: 482–497. doi: 10.1002/ar.1092310411
[45]  Battista D, Ferrari CC, Gage FH, Pitossi FJ (2006) Neurogenic niche modulation by activated microglia: transforming growth factor beta increases neurogenesis in the adult dentate gyrus. Eur J Neurosci 23: 83–93. doi: 10.1111/j.1460-9568.2005.04539.x
[46]  Monie ML, Mizumatsu S, Fike JR, Palmer TD (2002) Irradiation induces neural precursor-cell dysfunction. Nat Med 8: 955–962. doi: 10.1038/nm749
[47]  Yang F, Wang JC, Han JL, Zhao G, Jiang W (2008) Different effects of mild and severe seizures on hippocampal neurogenesis in adult rats. Hippocampus 18: 460–468. doi: 10.1002/hipo.20409
[48]  Geloso MC, Giannetti S, Cenciarelli C, Budoni M, Casalbore P, et al. (2007) Transplantation of foetal neural stem cells into the rat hippocampus during trimethyltin-induced neurodegeneration. Neurochem Res 32: 2054–2061. doi: 10.1007/s11064-007-9353-6
[49]  Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94: 239–247. doi: 10.1002/ar.1090940210
[50]  Podda MV, D’Ascenzo M, Leone L, Piacentini R, Azzena GB, et al. (2008) Functional role of cyclic nucleotide-gated channels in rat medial vestibular nucleus neurons. J Physiol 586: 803–815. doi: 10.1113/jphysiol.2007.146019
[51]  Podda MV, Leone L, Piacentini R, Cocco S, Mezzogori D, et al. (2012) Expression of olfactory-type cyclic nucleotide-gated channels in rat cortical astrocytes. Glia 60: 1391–1405. doi: 10.1002/glia.22360
[52]  Curcio L, Podda MV, Leone L, Piacentini R, Mastrodonato A, et al. (2013) Reduced D-serine levels in the nucleus accumbens of cocaine-treated rats hinder the induction of NMDA receptor-dependent synaptic plasticity. Brain 136: 1216–1230. doi: 10.1093/brain/awt036
[53]  Cuccurazzu B, Leone L, Podda MV, Piacentini R, Riccardi E, et al. (2010) Exposure to extremely low-frequency (50 Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice. Exp Neurol 226: 173–182. doi: 10.1016/j.expneurol.2010.08.022
[54]  McNaughton BL (1980) Evidence for two physiologically distinct perforant pathways to the fascia dentate. Brain Res 199: 1–19. doi: 10.1016/0006-8993(80)90226-7
[55]  Caria MA, Melis F, Podda MV, Solinas A, Deriu F (1996) Does long-term potentiation occur in guinea-pig Deiters’ nucleus? Neuroreport 7: 2303–2307. doi: 10.1097/00001756-199610020-00007
[56]  Bernardini C, Lattanzi W, Businaro R, Leone S, Corvino V, et al. (2010) Transcritpional effects of S100B on neuroblastoma cells: perturbation of cholesterol homeostasis and interference on the cell cycle. Gene Expr 14: 345–359. doi: 10.3727/105221610x12718619643013
[57]  Ge S, Yang CH, Hsu KS, Ming GL, Song H (2007) A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54: 559–566. doi: 10.1016/j.neuron.2007.05.002
[58]  van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, et al. (2002) Functional neurogenesis in the adult hippocampus. Nature 415: 1030–1034. doi: 10.1038/4151030a
[59]  Wang JW, David DJ, Monckton JE, Battaglia F, Hen R (2008) Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells. J Neurosci 28: 1374–1384. doi: 10.1523/jneurosci.3632-07.2008
[60]  Snyder JS, Kee N, Wojtowicz JM (2001) Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J Neurophysiol. 85(6): 2423–31.
[61]  Massa F, Koehl M, Wiesner T, Grosjean N, Revest JM, et al. (2011) Conditional reduction of adult neurogenesis impairs bidirectional hippocampal synaptic plasticity. Proc Natl Acad Sci USA 108: 6644–6649. doi: 10.1073/pnas.1016928108
[62]  Scobie KN, Hall BJ, Wilke SA, Klemenhagen KC, Fujii-Kuriyama Y, et al. (2009) Krüppel-like factor 9 is necessary for late-phase neuronal maturation in the developing dentate gyrus and during adult hippocampal neurogenesis. J Neurosci 29: 9875–9887. doi: 10.1523/jneurosci.2260-09.2009
[63]  Jessberger S, Aigner S, Clemenson GD Jr, Toni N, Lie DC, et al. (2008) Cdk5 regulates accurate maturation of newborn granule cells in the adult hippocampus. PLoS Biol 6: e272. doi: 10.1371/journal.pbio.0060272
[64]  Murone M, Rosenthal A, de Sauvage FJ (1999) Sonic hedgehog signaling by the Patched-Smoothened receptor complex. Curr Biol 9: 76–84. doi: 10.1016/s0960-9822(99)80018-9
[65]  Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, et al. (2003) Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426: 83–87. doi: 10.1038/nature02061
[66]  Baptista S, Bento AR, Gon?alves J, Bernardino L, Summavielle T, et al. (2012) Neuropeptide Y promotes neurogenesis and protection against methamphetamine-induced toxicity in mouse dentate gyrus-derived neurosphere cultures. Neuropharmacology 62: 2413–2423. doi: 10.1016/j.neuropharm.2012.02.015
[67]  Dayer AG, Ford AA, Cleaver KM, Yassaee M, Cameron HA (2003) Short-term and long-term survival of new neurons in the rat dentate gyrus. J Comp Neurol 460: 563–572. doi: 10.1002/cne.10675
[68]  Garthe A, Behr J, Kempermann G (2009) Adult-generated hippocampal neurons allow the flexible use of spatially precise learning strategies. PLoS ONE 4: 54–64. doi: 10.1371/journal.pone.0005464
[69]  Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, et al. (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472: 466–470. doi: 10.1038/nature09817
[70]  Jessberger S, Gage FH, Eisch AJ, Lagace DC (2009) Making a neuron: Cdk5 in embryonic and adult neurogenesis. Trends Neurosci 32: 575–582. doi: 10.1016/j.tins.2009.07.002
[71]  Lagace DC, Benavides DR, Kansy JW, Mapelli M, Greengard P, et al. (2008) Cdk5 is essential for adult hippocampal neurogenesis. Proc Natl Acad Sci USA 105: 18567–18571. doi: 10.1073/pnas.0810137105
[72]  Favaro R, Valotta M, Ferri AL, Latorre E, Mariani J, et al. (2009) Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci 12: 1248–1256. doi: 10.1038/nn.2397
[73]  Banerjee SB, Rajendran R, Dias BG, Ladiwala U, Tole S, et al. (2005) Recruitment of the Sonic hedgehog signalling cascade in electroconvulsive seizure-mediated regulation of adult rat hippocampal neurogenesis. Eur J Neurosci 22: 1570–1580. doi: 10.1111/j.1460-9568.2005.04317.x
[74]  Fang M, Lu Y, Chen GJ, Shen L, Pan YM, et al. (2011) Increased expression of sonic hedgehog in temporal lobe epileptic foci in humans and experimental rats. Neuroscience 182: 62–70. doi: 10.1016/j.neuroscience.2011.02.060
[75]  Suwelack D, Hurtado-Lorenzo A, Millan E, Gonzalez-Nicolini V, Wawrowsky K, et al. (2004) Neuronal expression of the transcription factor Gli1 using the Talpha1 alpha-tubulin promoter is neuroprotective in an experimental model of Parkinson’s disease. Gene Ther 11: 1742–1752. doi: 10.1038/sj.gt.3302377
[76]  Huang SS, Cheng H, Tang CM, Nien MW, Huang YS, et al.. (2013) Anti-oxidative, anti-apoptotic, and pro-angiogenic effects mediate functional improvement by sonic hedgehog against focal cerebral ischemia in rats. Exp Neurol doi: 10.1016/j.expneurol.2013.03.004.
[77]  Kuruba R, Hattiangady B, Shetty AK (2009) Hippocampal neurogenesis and neural stem cells in temporal lobe epilepsy. Epilepsy Behav 1: 65–73. doi: 10.1016/j.yebeh.2008.08.020
[78]  Gould E, Tanapat P, Hastings NB, Shors TJ (1999) Neurogenesis in adulthood: a possible role in learning. Trends Cogn Sci 3: 186–192. doi: 10.1016/s1364-6613(99)01310-8
[79]  Garthe A, Kempermann G (2013) An old test for new neurons: refining the Morris water maze to study the functional relevance of adult hippocampal neurogenesis. Front Neurosci 7: 63. doi: 10.3389/fnins.2013.00063

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133