全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Prospective Surveillance and Molecular Characterization of Seasonal Influenza in a University Cohort in Singapore

DOI: 10.1371/journal.pone.0088345

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Southeast Asia is believed to be a potential locus for the emergence of novel influenza strains, and therefore accurate sentinel surveillance in the region is critical. Limited information exists on sentinel surveillance of influenza-like illness (ILI) in young adults in Singapore in a University campus setting. The objective of the present study was to determine the proportion of ILI caused by influenza A and B viruses in a university cohort in Singapore. Methodology/Principal Findings We conducted a prospective surveillance study from May through October 2007, at the National University of Singapore (NUS). Basic demographic information and nasopharyngeal swabs were collected from students and staff with ILI. Reverse-transcriptase PCR (RT-PCR) and viral isolation were employed to detect influenza viruses. Sequencing of hemagglutinin (HA) and neuraminidase (NA) genes of some representative isolates was also performed. Overall proportions of influenza A and B virus infections were 47/266 (18%) and 9/266 (3%) respectively. The predominant subtype was A/H3N2 (55%) and the rest were A/H1N1 (45%). The overall sensitivity difference for detection of influenza A viruses using RT-PCR and viral isolation was 53%. Phylogenetic analyses of HA and NA gene sequences of Singapore strains showed identities higher than 98% within both the genes. The strains were more similar to strains included in the WHO vaccine recommendation for the following year (2008). Genetic markers of oseltamivir resistance were not detected in any of the sequenced Singapore isolates. Conclusions/Significance HA and NA gene sequences of Singapore strains were similar to vaccine strains for the upcoming influenza season. No drug resistance was found. Sentinel surveillance on university campuses should make use of molecular methods to better detect emerging and re-emerging influenza viral threats.

References

[1]  Taubenberger JK, Kash J (2010) Influenza virus evolution, Host Adaptation and Pandemic formation. Cell Hoste Microbe 7(6): 440–451. doi: 10.1016/j.chom.2010.05.009
[2]  Eggers M, Roth B, Schweiger B, Schmid M, Gregersin JP, et al. (2012) Comparison of the novel ResPlex III assay and existing techniques for the detection and subtyping of influenza virus during the influenza season 2006–2007. Eur J Clin Microbiol Infect Dis 31: 1257–1265. doi: 10.1007/s10096-011-1437-1
[3]  Patrick JG, Richard BT Jr (2003) Review of Rapid Diagnostic Tests for Influenza. Clin Appl Immunol Rev 4: 151–172.
[4]  Dwyer DE, Smith DW, Catton MG, Barr IG (2006) Laboratory diagnosis of human seasonal and pandemic influenza virus infection. Med J Aust 185(10 suppl): s48–s53.
[5]  Nicholson KG, Wood JM, Zambon M (2003) Influenza. Lancet 362: 1733–1745. doi: 10.1016/s0140-6736(03)14854-4
[6]  Wang R, Taubenberger JK (2010) Methods for molecular surveillance of influenza. Expert Rev Anti Infect Ther 8(5): 517–527. doi: 10.1586/eri.10.24
[7]  Mahony JB (2008) Detection of respiratory viruses by molecular methods. Clin Microbiol Rev 21: 716–747. doi: 10.1128/cmr.00037-07
[8]  Nolte FS (2008) Molecular diagnostics for detection of bacterial and viral pathogens in community-acquired pneumonia. Clin Infect Dis 2008 (Suppl 3)s123–s126. doi: 10.1086/591392
[9]  Moscona A (2005) Neuraminidase Inhibitors for Influenza. N Engl J Med 353: 1363–1373. doi: 10.1056/nejmra050740
[10]  Ng TP, Pwee KH, Niti M, Goh LG (2002) Influenza in Singapore: assessing the burden of illness in the community. Ann Acad Med Singapore 31: 182–188.
[11]  Shek LP, Lee BW (2003) Epidemiology and seasonality of respiratory tract virus infections in the tropics. Paediatr Respir Rev 4: 105–111. doi: 10.1016/s1526-0542(03)00024-1
[12]  Doraisingham S, Goh KT, Ling AE, Yu M (1988) Influenza surveillance in Singapore: 1972-86. Bull World Health Organ 66: 57–63.
[13]  Seah SG, Lim EA, Tan BH, Russell KL, Metzgar D, et al. (2010) Viral agents responsible for febrile respiratory illnesses among military recruits training in tropical Singapore. J Clin Virol 47: 289–292. doi: 10.1016/j.jcv.2009.12.011
[14]  Kadri ZN (1970) An outbreak of "hong Kong 'flu" in Singapore. I. Clinical study. Singapore Med J 11: 30–32.
[15]  Campbell DS, Rumley MH (1997) Cost-effectiveness of the influenza vaccine in a healthy, working-age population. J Occup Environ Med 39: 408–414. doi: 10.1097/00043764-199705000-00006
[16]  Sutejo R, Yeo DS, Myaing MZ, Hui C, Xia J, et al. (2012) Activation of Type I and III Interferon Signalling Pathways Occurs in Lung Epithelial Cells Infected with Low Pathogenic Avian Influenza Viruses. PLoS ONE 7(3): e33732 doi:10.1371/journal.pone.0033732.
[17]  World Health Organization (2002) WHO Manual on Animal Influenza Diagnosis andSurveillance.Available:http://www.who.int/csr/resources/publica?tions/influenza/whocdscsrncs20025rev.pdf.Accessed 2007 May 09.
[18]  Inoue M, Barkham T, Leo YS, Lin R, Lin C, et al. (2010) Emergence of oseltamivir-resistant pandemic (H1N1) 2009 virus within 48 hours. Emerg Infect Dis 16: 1633–1636. doi: 10.3201/eid1610.100688
[19]  Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR (2001) Universal primer set for the full-length amplification of all influenza A viruses. Arsh Virol 146: 2275–2289. doi: 10.1007/s007050170002
[20]  Poddar SK (2002) Influenza virus types and subtypes detection by single step single tube multiplex reverse transcription-polymerase chain reaction (RT-PCR) and agarose gel electrophoresis. J Virol Methods 99: 63–70. doi: 10.1016/s0166-0934(01)00380-9
[21]  Ghedin E, Sengamalay NA, Fraser CM, Taubenberger JK, Salzberg SL, et al. (2005) Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution. Nature 437: 1162–1166. doi: 10.1038/nature04239
[22]  Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucl. Acids Res 16(22): 10881–10890. doi: 10.1093/nar/16.22.10881
[23]  Mullins J, Cook R, Rinaldo C, Yablonsky E, Hess R, et al. (2011) Influenza-like illness among university students: symptom severity and duration due to influenza virus infection compared to other etiologies. J Am Coll Health 59(4): 246–251. doi: 10.1080/07448481.2010.502197
[24]  Louie JK, Hacker JK, Drew WL, Yagi S, Gonzales R, et al. (2005) Characterization of viral agents causing acute respiratory infection in a San Francisco University Medical Center Clinic during the influenza season. Clin Infect Dis 41(6): 822–828. doi: 10.1086/432800
[25]  mith AB, Mock V, Melear R, Colarusso P, Willis DE (2003) Rapid detection of influenza A and B viruses in clinical specimens by Light Cycler real time. J Clin Virol 28: 51–58. doi: 10.1016/s1386-6532(02)00238-x
[26]  Reina J, Plasencia V, Leyes M, Nicolau A, Galmés A, et al. (2010) Comparison study of a real-time reverse transcription polymerase chain reaction assay with an enzyme immunoassay and shell vial culture for influenza A and B virus detection in adult patients. Enferm Infecc Microbiol Clin 28: 95–98.
[27]  Liao RS, Tomalty LL, Majury A, Zoutman DE (2009) Comparison of viral isolation and multiplex real-time reverse transcription-PCR for confirmation of respiratory syncytial virus and influenza virus detection by antigen immunoassays. J Clin Microbiol 47: 527–532. doi: 10.1128/jcm.01213-08
[28]  Zitterkopf NL, Leekha S, Smith TF, Sampthkumar P, Wood CM, et al. (2006) Relevance of influenza A virus detection by PCR, shell vial assay, and tube cell culture to rapid reporting procedures. J Clin Microbiol 44(9): 3366–3367. doi: 10.1128/jcm.00314-06
[29]  Hindiyeh M, Levy V, Mendelson E, Grossman Z, Shalev Y, et al. (2005) Evaluation of a multiplex real-time reverse transcriptase PCR assay for detection and differentiation of influenza viruses A and B during the 2001–2002 influenza season in Israel. J Clin Microbiol 43(2): 589–595. doi: 10.1128/jcm.43.2.589-595.2005
[30]  Tang JW, Lee CK, Lee HK, Tambyah PA, Koay ES, et al. (2010) Tracking the emergence of pandemic influenza A/H1N1/2009 and its interaction with seasonal influenza viruses in Singapore. Ann Acad Med Singapore 39(4): 291–294.
[31]  Ministry of Health, Singapore (2010) Air/droplet-borne diseases. In: Communicable diseases surveillance in Singapore 2009. 7-9 Available at: http://www.moh.gov.sg/mohcorp/publicatio?nsreports.aspx?id=225254. Accessed 2011 January 5.
[32]  Dharan NJ, Gubareva LV, Meyer J, Fry AM, Bresee JS, et al. (2009) Infections with oseltamivir resistant influenza A(H1N1) virus in the United States. JAMA 301: 1034–1041. doi: 10.1001/jama.2009.294

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133