全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Differences in Tolerance to Host Cactus Alkaloids in Drosophila koepferae and D. buzzatii

DOI: 10.1371/journal.pone.0088370

Full-Text   Cite this paper   Add to My Lib

Abstract:

The evolution of cactophily in the genus Drosophila was a major ecological transition involving over a hundred species in the Americas that acquired the capacity to cope with a variety of toxic metabolites evolved as feeding deterrents in Cactaceae. D. buzzatii and D. koepferae are sibling cactophilic species in the D. repleta group. The former is mainly associated with the relatively toxic-free habitat offered by prickly pears (Opuntia sulphurea) and the latter has evolved the ability to use columnar cacti of the genera Trichocereus and Cereus that contain an array of alkaloid secondary compounds. We assessed the effects of cactus alkaloids on fitness-related traits and evaluated the ability of D. buzzatii and D. koepferae to exploit an artificial novel toxic host. Larvae of both species were raised in laboratory culture media to which we added increasing doses of an alkaloid fraction extracted from the columnar cactus T. terschekii. In addition, we evaluated performance on an artificial novel host by rearing larvae in a seminatural medium that combined the nutritional quality of O. sulphurea plus amounts of alkaloids found in fresh T. terschekii. Performance scores in each rearing treatment were calculated using an index that took into account viability, developmental time, and adult body size. Only D. buzzatii suffered the effects of increasing doses of alkaloids and the artificial host impaired viability in D. koepferae, but did not affect performance in D. buzzatii. These results provide the first direct evidence that alkaloids are key determinants of host plant use in these species. However, the results regarding the artificial novel host suggest that the effects of alkaloids on performance are not straightforward as D. koepferae was heavily affected. We discuss these results in the light of patterns of host plan evolution in the Drosophila repleta group.

References

[1]  Schoonhoven LM, Loon JJA, Dicke M (2005) Insect-Plant Biology. Oxford University Press. pp. 421.
[2]  Schluter D (2001) Ecology and the origin of species. Trends Ecol Evol 16: 372–380. doi: 10.1016/s0169-5347(01)02198-x
[3]  Dres M, Mallet J (2002) Host races in plant-feeding insects and their importance in sympatric speciation. . Phil. Trans. R. Soc. Lond. B 357: 471–492. doi: 10.1098/rstb.2002.1059
[4]  Dieckmann U, Doebeli M, Metz JAJ (2004) Adaptive speciation. Cambridge University Press, Cambridge. Pp. 488.
[5]  Funk DJ, Nosil P, Etges B (2006) Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proc Natl Acad Sci USA 103: 3209–3213. doi: 10.1073/pnas.0508653103
[6]  Funk DJ, Nosil P (2008) Comparative analyses and the study of ecological speciation in herbivorous insects. In: Tilmon K editor. Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects. University of California Press. pp. 117–135.
[7]  Rova E, Bj?rklund M (2011) Can preference for oviposition sites initiate reproductive isolation in Callosobruchus maculatus? PLoS ONE 6(1): e14628 doi:10.1371/journal.pone.0014628. Accessed 12 September 2013.
[8]  Agrawal AA (2011) Current trends in evolutionary ecology of plant defences. Funct Ecol 25: 420–432. doi: 10.1111/j.1365-2435.2010.01796.x
[9]  Kircher HW (1982) Chemical composition of cacti and its relationship to Sonoran desert Drosophila. In: Barker JSF, Starmer WT editors. Ecological Genetics and Evolution. Academic Press. Sydney, Australia. pp. 143?158.
[10]  Fogleman JC, Abril JR (1990) Ecological and evolutionary importance of host plant chemistry. In: Barker JSF, Starmer WT, MacIntyre RJ editors. Ecological and evolutionary genetics of Drosophila. Plenum Press, New York. pp. 121–143.
[11]  Via S (1990) Ecological genetics and host adaptation in herbivorous insects: The experimental study of evolution in natural and agricultural systems. Annu Rev Entomol 35: 421–446. doi: 10.1146/annurev.en.35.010190.002225
[12]  Etges WJ (1990) Direction of life history evolution in Drosophila mojavensis. In: Barker JSF, Starmer WT, MacIntyre RJ editors. Ecological and evolutionary genetics of Drosophila. Plenum Press, New York. pp. 121–143.
[13]  Mitter C, Futuyma DJ (1983) An evolutionary-genetic view of host-plant utilization by insects. In: Denno RF, Mcclure MS editors. Variable plants and herbivores in natural and managed systems. Academic Press, New York. pp. 427–459.
[14]  Jaenike J (1990) Host specialization by phytofagous insects. . Annu Rev Ecol Syst. 21: 243–273. doi: 10.1146/annurev.es.21.110190.001331
[15]  Fanara JJ, Hasson E (2001) Oviposition acceptance and fecundity schedule in the cactophilic sibling species Drosophila buzzatii and D. koepferae on their natural hosts. Evolution 55: 2615–2619. doi: 10.1111/j.0014-3820.2001.tb00774.x
[16]  Jaureguy LM, Etges WJ (2007) Assessing patterns of senescence in Drosophila mojavensis reared on different host cacti. . Evol Ecol Res. 9: 91–107.
[17]  Dambroski HR, Linn C, Berlocher S, Forbes AA, Roelofs W, et al. (2005) The genetic basis for fruit odor discrimination in Rhagoletis flies and its significance for sympatric host shifts. Evolution 59: 1953–1964. doi: 10.1554/05-133.1
[18]  McBride CS (2007) Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechelia. . Proc Natl Acad Sci USA. 104: 4996–5001. doi: 10.1073/pnas.0608424104
[19]  Hawthorne DJ, Via S (2001) Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature 412: 904–907.
[20]  Jones CD (1998) The genetic basis of Drosophila sechellia's resistance to a host plant toxin. Genetics 149: 1899–1908.
[21]  Jones CD (2004) Genetics of egg production in Drosophila sechellia. Heredity 92: 235–241. doi: 10.1038/sj.hdy.6800401
[22]  Markow TA, O’Grady P (2008) Reproductive ecology of Drosophila. . Funct Ecol. 22: 747–759. doi: 10.1111/j.1365-2435.2008.01457.x
[23]  Powell JR (1997) Progress and prospects in evolutionary biology: the Drosophila model. Oxford Univ. Press, New York. Pp. 576.
[24]  Wasserman M (1982) Evolution of the repleta group. In: Ashburner M, Carson HL, Thompson JN editors. The Genetics and Biology of Drosophila. Academic Press, London & New York. pp. 61?139.
[25]  Throckmorton LH (1982) The virilis species group. In Ashburner M, Thompson JN, Carson HL editors. The Genetics and Biology of Drosophila. Academic Press. Pp. 227?296.
[26]  Fogleman JC, Danielson PB (2001) Chemical Interactions in the Cactus-Microorganism-Drosophila Model System of the Sonoran Desert. . Am Zool. 41: 877–889. doi: 10.1668/0003-1569(2001)041[0877:ciitcm]2.0.co;2
[27]  Fogleman JC, Heed WB (1989) Columnar cacti and desert Drosophila: the chemistry of host plant specificity. In: Interactions among plants and animals in the western deserts. Schmidt JO editor. University of New Mexico Press, Albuquerque. pp. 1? 24.
[28]  Heed WB, Mangan RL (1986) Community ecology of the Sonoran Desert Drosophila. In: Ashburner M, Carson HL, Thompson Jr JN editors. The Genetics and Biology of Drosophila. Academic Press, New York. pp. 311?345.
[29]  Etges WJ, Veenstra CL, Jackson LL (2006) Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. VII. Effects of larval dietary fatty acids on adult epicuticular hydrocarbons. J Chem Ecol. 32: 2629–2646. doi: 10.1007/s10886-006-9187-8
[30]  Heed WB, Kircher HW (1965) Unique sterol in the ecology and nutrition of Drosophila pachea. Science 149: 758–761. doi: 10.1126/science.149.3685.758
[31]  Lang M, Murat S, Clark AG, Gouppil G, Blais C, et al. (2012) Mutations in the neverland Gene Turned Drosophila pachea into an Obligate Specialist Species. Science 337: 1658–1661. doi: 10.1126/science.1224829
[32]  Oliveira DCSG, Almeida FC, O'Grady PM, Armella MA, DeSalle R, et al. (2012) Monophyly, divergence times, and evolution of host plant use inferred from a revised phylogeny of the Drosophila repleta species group. . Mol Phylogen Evol. 64: 533–544 doi:10.1016/j.ympev.2012.05.012.
[33]  Manfrin MH, Sene FM (2006) Cactophilic Drosophila in South America: a model for evolutionary studies. Genetica 126: 57–75. doi: 10.1007/s10709-005-1432-5
[34]  Hasson E, Soto IM, Carreira VP, Corio C, Soto EM, et al.. (2009) Host plants, fitness and developmental instability in a guild of cactophilic species of the genus Drosophila. In: Santos EB editor. Ecotoxicology Research Developments. Nova Science Publisher, Inc., Hauppauge, Nueva York. pp. 89?109.
[35]  Hasson E, Naveira H, Fontdevila A (1992) The breeding sites of the Argentinian species of the Drosophila mulleri complex (subgenus Drosophila repleta group). Rev Chil Hist Nat. 65: 319–326.
[36]  Fanara JJ, Fontdevila A, Hasson E (1999) Oviposition preference and life history traits in cactophilic Drosophila koepferae and D. buzzatii in association with their natural hosts. . Evol Ecol. 13: 173–190. doi: 10.1554/0014-3820(2001)055[2615:oaafsi]2.0.co;2
[37]  Carreira VP, Soto IM, Hasson E, Fanara JJ (2006) Patterns of variation in wing morphology in the cactophilic Drosophila buzzatii and its sibling D. koepferae. J. . Evol Biol. 19: 1275–1282. doi: 10.1111/j.1420-9101.2005.01078.x
[38]  Soto IM, Carreira VP, Fanara JJ, Hasson E (2007) Evolution of male genitalia: environmental and genetic factors affect genital morphology in two Drosophila sibling species and their hybrids. . BMC Evol Biol. 7: 77. doi: 10.1186/1471-2148-7-77
[39]  Soto IM, Carreira VP, Soto EM, Hasson E (2008) Wing morphology and fluctuating asymmetry depend on the host plant in cactophilic Drosophila. . J Evol Biol. 21: 598–609. doi: 10.1111/j.1420-9101.2007.01474.x
[40]  Soto EM, Goenaga J, Hurtado J, Hasson E (2012) Oviposition and performance in natural hosts in cactophilic Drosophila. Evol Ecol 26: 975–990. doi: 10.1007/s10682-011-9531-5
[41]  Fanara JJ, Folguera G, Iriarte P, Mensch J, Hasson E (2006) Genotype by environment interactions in viability and developmental time in populations of cactophilic Drosophila. . J Evol Biol. 19: 900–908. doi: 10.1111/j.1420-9101.2006.01084.x
[42]  Stintzing FC, Carle R (2005) Cactus stems (Opuntia spp.): a review on their chemistry, technology, and uses. Molecular nutrition & food research 49: 175–194. doi: 10.1002/mnfr.200400071
[43]  Reti L, Castrillón JA (1951) Cactus Alkaloids. I. Trichocereus terscheckii (Parmentier) Britton and Rose. . J Am Chem Soc. 73: 1767–1769.
[44]  Fernández Iriarte PF, Hasson E (2000) The role of the use of different host plants in the maintenance of the inversion polymorphism in the cactophilic Drosophila buzzatii. . Evolution. 54: 1295–1302. doi: 10.1111/j.0014-3820.2000.tb00562.x
[45]  Corio C, Soto IM, Carreira VP, Padró J, Betti MIL, et al. (2013) An alkaloid fraction extracted from the cactus Trichocereus terschekii affects fitness components in the cactophilic fly Drosophila buzzatii. . Biol J Linn Soc Lond. 109 (2): 342–353. doi: 10.1111/bij.12036
[46]  Vilela CA (1983) A revision of the Drosophila species group (Diptera-Drosophilidae). . Rev Brasil Entomol. 27: 1–114.
[47]  Wink M (1988) Plant breeding importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genetics 75: 225–233. doi: 10.1007/bf00303957
[48]  Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64: 3–19. doi: 10.1016/s0031-9422(03)00300-5
[49]  Ogunbodede O, McCombs D, Trout K, Daley P, Terry M (2010) New mescaline concentrations from 14 taxa/cultivars of Echinopsis spp. (Cactaceae) (“SanPedro”) and their relevance to shamanic practice. . J Ethnopharmacol. 131: 356–362. doi: 10.1016/j.jep.2010.07.021
[50]  Meyer JM, Fogleman JC (1987) Significance of saguaro cactus alkaloids in ecology of Drosophila mettleri, a soil-breeding, cactophilic drosophilid. J Chem Ecol. 13: 2069–2081. doi: 10.1007/bf01012872
[51]  Padró J, Soto IM (2013) Exploration of the nutritional profile of Trichocereus terscheckii (Parmentier) Britton & Rose stems. . J. Prof. Assoc. Cactus Develop. 15: 1–12.
[52]  Pennanec'h M, Bricard L, Kunesch G, Jallon JM (1997) Incorporation of fatty acids into cuticular hydrocarbons of male and female Drosophila melanogaster.. J Insect Physiol 43: 1111–1116. doi: 10.1016/s0022-1910(97)00082-6
[53]  Ray AM, Millar JG, McElfresh JS, Swift IP, Barbour JD, et al. (2009) Male-produced aggregation pheromone of the cerambycid beetle Rosalia funebris. . J Chem Ecol. 35: 96–103. doi: 10.1007/s10886-008-9576-2
[54]  Rohlf JF (2003) Morphometrics. TpsDig versión 1.38 Available: http://morph.bio.sunysb.edu/morph/index.?html. Accessed 2013 Dec. 12. Department of Ecology and Evolution, State University of New York.
[55]  Dryden IL, Mardia KV (1998) Statistical Shape Analysis, John Wiley, Chichester. Pp. 347.
[56]  Ruiz A, Heed WB (1988) Host-plant specificity in the cactophilic Drosophila mulleri species complex. . J Anim Ecol. 57 237–249. doi: 10.2307/4775
[57]  Krebs RA, Barker JSF (1991) Coexistence of ecologically similar colonizing species. 1. Intraspecific and interspecific competition in Drosophila aldrichi and D. buzzatii. . Aust J Zool. 39: 579–593. doi: 10.1071/zo9910579
[58]  Cortese M, Norry FM, Piccinali R, Hasson E (2002) Direct and correlated responses to selection on wing length and developmental time in Drosophila buzzatii. Evolution 56: 2541– 2547.
[59]  Roff DA (2000) Trade-offs between growth and reproduction: an analysis of the quantitative genetic evidence. J. Evol. Biol. 13: 434–445. doi: 10.1046/j.1420-9101.2000.00186.x
[60]  Sgro CM, Hoffmann AA (2004) Genetic correlations, tradeoffs and environmental variation. Heredity 93: 241–248. doi: 10.1038/sj.hdy.6800532
[61]  Efron B, Tibshirani R J (1993) An introduction to the bootstrap. Chapman and Hall, New York. Pp. 436.
[62]  Tabachnick BG, Fidell LS (2007) Using Multivariate Statistics (5th ed.). New York: Allyn and Bacon. Pp. 1008.
[63]  StatSoft (2001) Inc. STATISTICA (data analysis software system), version 6.0. Available: www.statsoft.com.
[64]  Hood GM (2008) PopTools, version 3.0.3. Available: http://www.poptools.org/. Accessed 2014 Jan 10.
[65]  Kircher HW, Heed WB, Russell JS, Grove J (1967) Senita cactus alkaloids: their significance to Sonoran Desert Drosophila ecology. . J Insect Physiol. 13: 1869–1874. doi: 10.1016/0022-1910(67)90023-6
[66]  Fogleman JC, Hackbarth K R, Heed WB (1981) Behavioral differentiation between two species of cactophilic Drosophila. . III. Oviposition site preference. Am Nat. 118: 541–548. doi: 10.1086/283846
[67]  Woods RE, Sgro CM, Hercus MJ, Hoffmann AA (1999) The association between fluctuating asymmetry, trait variability, trait heritability, and stress: a multiply replicated experiment on combined stresses in Drosophila melanogaster. Evolution 53: 493–505. doi: 10.2307/2640785
[68]  Soto EM, Soto IM, Carreira VP, Fanara JJ, Hasson E (2008) Host-related life history traits in interspecific hybrids of cactophilic Drosophila. Entomol Exp Appl. 126: 18–27. doi: 10.1111/j.1570-7458.2007.00631.x
[69]  Hurtado J, Soto EM, Orellana ML, Hasson E (2012) Mating success depends on rearing substrate in cactophilic Drosophila. Evol Ecol. 26: 733–743. doi: 10.1007/s10682-011-9529-z
[70]  Schreiber K (1958) Uber einige Inhaltsstoffe der Solanaceen und ihre Bedeutung fur die Kartoffelkaferresistenz. . Ent Exp Appl. 1: 28–37. doi: 10.1111/j.1570-7458.1958.tb00006.x
[71]  Harley K L, Thorsteinson AJ (1967) The influence of plant chemicals on the feeding behavior, development and survival of the two-striped grasshopper. Melanoplus bivittatus (Say). Acrididae: Orthoptera. . Can J Zool. 45: 315319. doi: 10.1139/z67-043
[72]  Narberhaus I, Zintgraf V, Dobler S (2005) Pyrrolizidine alkaloids on three trophic levels – evidence for toxic and deterrent effects on phytophages and predators. Chemoecology. 15: 121–125. doi: 10.1007/s00049-005-0302-z
[73]  Morales-Hojas R, Vieira J (2012) Phylogenetic patterns of geographical and ecological diversification in the subgenus Drosophila. PLoS One 7: e49552. doi: 10.1371/journal.pone.0049552
[74]  Nyffeler R (2002) Phylogenetic relationships in the cactus family (Cactaceae) based on evidence from trnK/ matK and trnL-trnFsequences. . Am J Bot. 89: 312–326. doi: 10.3732/ajb.89.2.312
[75]  Fontdevila A, Pla C, Hasson E (1988) Drosophila koepferae: a new member of the Drosophila serido (Diptera-Drosophilidae) superspecies taxon. . Ann Entomol Soc Am. 81: 380–385.
[76]  Carreira VP, Padró J, Mongiardino Koch N, Fontanarrosa P, Alonso JI, et al. (2014) Nutritional composition of Opuntia sulphurea (G. Don in Loudon) cladodes. Haseltonia 19: 38–45. doi: 10.2985/026.019.0106
[77]  Bush GL (1969) Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera: Tephritidae). Evolution 23: 237–251. doi: 10.2307/2406788
[78]  R’Kha S, Capy P, David JR (1991) Host-plant specialization in the Drosophila melanogaster species complex: a physiological, behavioral, and genetical analysis. Proc Natl Acad Sci USA 88: 1835–1839. doi: 10.1073/pnas.88.5.1835
[79]  Bush GL (1975) Sympatric speciation in phytophagous parasitic insects. In: Price PW editor. Evolutionary strategies of parasitic insects and mites. Plenum Press, New York. pp. 187–206.
[80]  Thomas CD, Ng D, Singer MC, Mallet JLB, Parmesan C, et al. (1987) Incorporation of a European weed into the diet of a North American herbivore. Evolution 41: 892–901. doi: 10.2307/2408897
[81]  Starmer WT, Lachance M, Phaff HJ, Heed WB (1990) The biogeography of yeast associated with decaying cactus tissue in North America, the Caribean, and Northern Venezuela. . Evol Biol. 24: 115–190.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133