全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

eNOS-Dependent Antisenscence Effect of a Calcium Channel Blocker in Human Endothelial Cells

DOI: 10.1371/journal.pone.0088391

Full-Text   Cite this paper   Add to My Lib

Abstract:

Senescence of vascular endothelial cells is an important contributor to the pathogenesis of age-associated vascular disorders such as atherosclerosis. We investigated the effects of antihypertensive agents on high glucose-induced cellular senescence in human umbilical venous endothelial cells (HUVECs). Exposure of HUVECs to high glucose (22 mM) for 3 days increased senescence-associated- β-galactosidase (SA-β-gal) activity, a senescence marker, and decreased telomerase activity, a replicative senescence marker. The calcium channel blocker nifedipine, but not the β1-adrenergic blocking agent atenolol or the angiotensin-converting enzyme inhibitor perindopril, reduced SA-β-gal positive cells and prevented a decrease in telomerase activity in a high-glucose environment. This beneficial effect of nifedipine was associated with reduced reactive oxygen species (ROS) and increased endothelial nitric oxide synthase (eNOS) activity. Thus, nifedipine prevented high glucose-induced ROS generation and increased basal eNOS phosphorylation level at Ser-1177. Treatment with NG-nitro-L-arginine (L-NAME) and transfection of small interfering RNA (siRNA) targeting eNOS eliminated the anti-senscence effect of nifedipine. These results demonstrate that nifedipine can prevent endothelial cell senescence in an eNOS-dependent manner. The anti-senescence action of nifedipine may represent a novel mechanism by which it protects against atherosclerosis.

References

[1]  Voelker R (2008) IOM: focus on case for aging population. JAMA 299: 2611–2613. doi: 10.1001/jama.299.22.2611
[2]  Rosamond W, Flegal K, Furie K, Go A, Greenlund K, et al. (2008) Heart disease and stroke statistics - - 2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117: e25–e146. doi: 10.1161/circulationaha.107.187998
[3]  Yildiz O (2007) Vascular smooth muscle and endothelial functions in aging. Ann NY Acad Sci 1100: 353–360. doi: 10.1196/annals.1395.038
[4]  Wagner M, Hampel B, Bernhard D, Hala M, Zwerschke W, et al. (2001) Replicative senescence of human endothelial cells in vitro involves GI arrest, polyploidization and senescence-associated apoptosis. Exp Gerontol 36: 1327–1347. doi: 10.1016/s0531-5565(01)00105-x
[5]  Simionescu M (2007) Implications of early structural-functional changes in the endothelium for vascular disease. Arterioscler Thromb Vasc Biol 27: 266–274. doi: 10.1161/01.atv.0000253884.13901.e4
[6]  Veisari D, Daghini E, Virdis A, Ghiadoni L, Taddei S (2009) The ageing endothelium, cardiovascular risk and disease in man. Exp Physiol 94: 317–321. doi: 10.1113/expphysiol.2008.043356
[7]  Serrano AL, Andres V (2004) Telomeres and cardiovascular disease: does size matter? Circ Res 94: 575–584. doi: 10.1161/01.res.0000122141.18795.9c
[8]  Edo MD, Andres V (2005) Aging, telomeres, and atherosclerosis. Cardiovasc Res 66: 213–221. doi: 10.1016/j.cardiores.2004.09.007
[9]  Vasile E, Tomita Y, Brown LF, Kocher O, Dvorak HF (2001) Differential expression of thymosin beta-10 by early passage and senescent vascular endothelium is modulated by VPF/VEGF: evidence for senescent cells in vivo at sites of atherosclerosis. FASEB J 15: 458–466. doi: 10.1096/fj.00-0051com
[10]  Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, et al. (2002) Endothelial cell senescence in human atherosclerosis: role of endothelial dysfunction. Circulation 105: 1541–1544. doi: 10.1161/01.cir.0000013836.85741.17
[11]  Minamino T, Komuro I (2007) Vascular cell senescence. Contribution to atherosclerosis. Circ Res 100: 15–26. doi: 10.1161/01.res.0000256837.40544.4a
[12]  Hayashi T, Matsui-Hirai H, Miyazaki-Akita A, Fukatsu A, Funami J, et al. (2006) Endothelial cellular senescence is inhibited by nitric oxide: Implications in athero-sclerosis associated with menopause and diabetes. Proc Natl Acad Sci USA 103: 17018–17023. doi: 10.1073/pnas.0607873103
[13]  Matsui-Hirai H, Hayashi T, Yamamoto S, Ina K, Maeda M, et al. (2011) Dose-dependent modulatory effects of insulin on glucose-induced endothelial senescence in vitro and in vivo: A relationship between telomeres and nitric oxide. J Pharmacol Exp Ther 337: 591–599. doi: 10.1124/jpet.110.177584
[14]  Yokoi T, Fukuo K, Yasuda O, Hotta M, Miyazaki J, et al. (2006) Apoptosis signal-regulating kinase 1 mediates cellular senescence induced by high glucose in endothelial cells. Diabetes 55: 1660–1665. doi: 10.2337/db05-1607
[15]  Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated β-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113: 3613–3622.
[16]  Chandra J, Hackbarth J, Le S, Loegering D, Bone N, et al. (2003) Involvement of reactive oxygen species in adaphostin-induced cytotoxicity in human leukemia cells. Blood 102: 4512–4519. doi: 10.1182/blood-2003-02-0562
[17]  Miyazaki-Akita A, Hayashi T, Ding QF, Shiraishi H, Nomura T, et al. (2007) 17β-Estradiol antagonizes the down-regulation of endothelial nitric-oxide synthase and GTP cyclohydrolase I by high glucose: relevance to postmenopausal diabetic cardiovascular disease. J Pharmacol Exp Ther 320: 591–598. doi: 10.1124/jpet.106.111641
[18]  Hayashi T, Yano K, Matsui-Hirai H, Yokoo H, Hattori Y, et al. (2008) Nitric oxide and endothelial cellular senescence. Pharmacol Ther 120: 333–339. doi: 10.1016/j.pharmthera.2008.09.002
[19]  Behl C, Davis JB, Lesley R, Schubert D (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77: 817–827. doi: 10.1016/0092-8674(94)90131-7
[20]  Christ M, Bauersachs J, Liebetrau C, Heck M, Günther A, et al. (2002) Glucose increases endothelial-dependent superoxide formation in coronary arteries by NAD(P)H oxidase activation. Attenuation by the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor atorvastatin. Diabetes 51: 2648–2652. doi: 10.2337/diabetes.51.8.2648
[21]  Ushio-Fukai M, Zafari AM, Fukui T, Ishizaka N, Griendling KK (1996) p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J Biol Chem 271: 23317–23321. doi: 10.1074/jbc.271.38.23317
[22]  Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, et al. (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399: 601–605. doi: 10.1046/j.1365-201x.2000.00627.x
[23]  Morrow VA, Foufelle F, Connel JM, Petrie JR, Gould GW, et al. (2003) Direct activation of AMP-activated protein kinase stimulates nitric-oxide synthesis in human aortic endothelial cells. J Biol Chem 278: 31629031639. doi: 10.1074/jbc.m212831200
[24]  Davis BJ, Xie Z, Viollet B, Zou MH (2006) Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes 55: 496–505. doi: 10.2337/diabetes.55.02.06.db05-1064
[25]  Henry PD, Bentley KI (1981) Suppression of atherogenesis in cholesterol-fed rabbit treated with nifedipine. J Clin Invest 68: 1366–1369. doi: 10.1172/jci110384
[26]  Willis AL, Nagel B, Churchill V, Whyte MA, Smith DL, et al. (1985) Antiatherosclerotic effects of nicardipine and nifedipine in cholesterol-fed rabbits. Atherosclerosis 5: 250–255. doi: 10.1161/01.atv.5.3.250
[27]  Chen L, Haught WH, Yang B, Saldeen TG, Parathasarathy S, et al. (1997) Preservation of endogenous antioxidant activity and inhibition of lipid peroxidation as common mechanisms of antiatherosclerotic effects of vitamin E, lovaststin and amlodipine. J Am Coll Cardiol 30: 569–575. doi: 10.1016/s0735-1097(97)00158-7
[28]  Cristofori P, Lanzoni A, Quartaroli M, Pastorino AM, Zancanaro C, et al. (2000) The calcium-channel blocker lacidipine reduces the development of atherosclerotic lesions in the apoE-deficient mouse. J Hypertens 18: 1429–1436. doi: 10.1097/00004872-200018100-00010
[29]  Kyselovic J, Martinka P, Batova Z, Gazova A, Godfraind T (2005) Calcium channel blocker inhibits Western-type diest-evoked atherosclerosis development in ApoE-deficient mice. J Pharmacol Exp Ther 315: 320–328. doi: 10.1124/jpet.105.089847
[30]  Nakano K, Egashira K, Ohtani K, Gang Z, Iwata E, et al. (2008) Azelnidipine has anti-atherosclerotic effects independent of its blood pressure-lowering actions in monkeys and mice. Atherosclerosis 196: 172–179. doi: 10.1016/j.atherosclerosis.2007.03.036
[31]  Croom KF, Wellington K (2006) Modified-release nifedipine. A review of the use of modified-release formulations in the treatment of hypertension and angina pectoris. Drugs 66: 497–528. doi: 10.2165/00003495-200666040-00007
[32]  Wang D, Jiang K, Yang S, Qin F, Lu X, et al. (2011) Determination of nifedipine in human plasma by ultra performance liquid chromatography-tandem mass spectrometry and its application in a pharmacokinetic study. J Chromatography B 879: 1827–1832. doi: 10.1016/j.jchromb.2011.04.034
[33]  Chen R, Huang J, Lv C, Wei C, Li R, et al. (2013) A more rapid, sensitive, and specific HPLC-MS/MS method for nifedipine analysis in human plasma and application to a pharmacokinetic study. Drug Res 63: 38–45. doi: 10.1055/s-0032-1331713
[34]  Lichtlen PR, Hugenholtz PG, Rafflenbeul W, Hecker H, Jost S, et al. (1990) Retardation of angiographic progression of coronary artery disease by nifedipine. Results of the International Nifedipine Trial on Antiatherosclerotic Therapy (INTACT). INTACT Group Investigators. Lancet 335: 1109–1113. doi: 10.1016/0140-6736(90)91121-p
[35]  Waters D, Lespérance J, Francetich M, Causey D, Théroux P, et al. (1990) A controlled clinical trial to assess the effect of a calcium channel blocker on the progression of coronary atherosclerosis. Circulation 82: 1940–1953. doi: 10.1161/01.cir.82.6.1940
[36]  Hemández RH, Armas-Hernández MJ, Velasco M, Israli ZH, Armas-Padilla MC (2003) Calcium antagonists and atherosclerosis protection in hypertension. Am J Ther 10: 409–414. doi: 10.1097/00045391-200311000-00006
[37]  Ishii N, Matsumura T, Shimoda S, Araki E (2012) Anti-atherosclerotic potential of dihydropyridine calcium channel blockers. J Atheroscler Thromb 19: 693–704. doi: 10.5551/jat.12450

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133