[1] | Miles LA, Plow EF (1985) Binding and activation of plasminogen on the platelet surface. J Biol Chem 260: 4303–4311.
|
[2] | Kornblatt MJ, Kornblatt JA, Hancock MA (2011) The interaction of canine plasminogen with Streptococcus pyogenes enolase: they bind to one another but what is the nature of the structures involved? PLoS One 6: e28481 10.1371/journal.pone.0028481 [doi];PONE-D-11-14301 [pii].
|
[3] | Miles LA, Dahlberg CM, Levin EG, Plow EF (1989) Gangliosides interact directly with plasminogen and urokinase and may mediate binding of these fibrinolytic components to cells. Biochemistry 28: 9337–9343. doi: 10.1021/bi00450a014
|
[4] | de la Paz SM, Gest PM, Guerin ME, Coincon M, Pham H, et al. (2011) Glycolytic and non-glycolytic functions of Mycobacterium tuberculosis fructose-1,6-bisphosphate aldolase, an essential enzyme produced by replicating and non-replicating bacilli. J Biol Chem 286: 40219–40231 M111.259440 [pii];10.1074/jbc.M111.259440 [doi].
|
[5] | Rogalski AA, Steck TL, Waseem A (1989) Association of glyceraldehyde-3-phosphate dehydrogenase with the plasma membrane of the intact human red blood cell. J Biol Chem 264: 6438–6446.
|
[6] | Bhattacharya S, Ploplis VA, Castellino FJ (2012) Bacterial plasminogen receptors utilize host plasminogen system for effective invasion and dissemination. J Biomed Biotechnol 2012: 482096 10.1155/2012/482096 [doi].
|
[7] | Ehinger S, Schubert WD, Bergmann S, Hammerschmidt S, Heinz DW (2004) Plasmin(ogen)-binding alpha-enolase from Streptococcus pneumoniae: crystal structure and evaluation of plasmin(ogen)-binding sites. J Mol Biol 343: 997–1005 S0022-2836(04)01088-5 [pii];10.1016/j.jmb.2004.08.088 [doi].
|
[8] | Xue Y, Bodin C, Olsson K (2012) Crystal structure of the native plasminogen reveals an activation-resistant compact conformation. J Thromb Haemost 10: 1385–1396 10.1111/j.1538-7836.2012.04765.x [doi].
|
[9] | Law RH, Caradoc-Davies T, Cowieson N, Horvath AJ, Quek AJ, et al. (2012) The X-ray crystal structure of full-length human plasminogen. Cell Rep 1: 185–190 S2211-1247(12)00069-1 [pii];10.1016/j.celrep.2012.02.012 [doi].
|
[10] | Bachmann F (1994) Molecular aspects of plasminogen, plasminogen activators and plasmin. In: Bloom AL, Forbes CD, Thomas DP, Tuddenham EGD, editors. Haemostasis and thrombosis. U.K.: Chuchill Livingston. pp. 525–600.
|
[11] | Violand BN, Byrne R, Castellino FJ (1978) The effect of α-,ω-amino acids on human plasminogen structure and activation. J Biol Chem 253: 5395–5401.
|
[12] | Markus G, Evers JL, Hobika GH (1978) Comparison of some properties of native (Glu) and modified (Lys) human plasminogen. J Biol Chem 253: 733–739.
|
[13] | Derbise A, Song YP, Parikh S, Fischetti VA, Pancholi V (2004) Role of the C-terminal lysine residues of streptococcal surface enolase in Glu- and Lys-plasminogen-binding activities of group A streptococci. Infect Immun 72: 94–105. doi: 10.1128/iai.72.1.94-105.2004
|
[14] | Bergmann S, Wild D, Diekmann O, Frank R, Bracht D, et al.. (2003) Identification of a novel plasmin(ogen)-binding motif in surface displayed alpha-enolase of Streptococcus pneumoniae. Mol Microbiol 49: : 411–423. 3557 [pii].
|
[15] | Cork AJ, Jergic S, Hammerschmidt S, Kobe B, Pancholi V, et al. (2009) Defining the structural basis of human plasminogen binding by streptococcal surface enolase. J Biol Chem 284: 17129–17137 M109.004317 [pii];10.1074/jbc.M109.004317 [doi].
|
[16] | Castellino FJ, Powell JR (1981) Human plasminogen. Methods Enzymol 80 Pt C: 365–378. doi: 10.1016/s0076-6879(81)80031-6
|
[17] | Kornblatt JA, Barretto TA, Chigogidze K, Chirwa B (2007) Canine Plasminogen: Spectral responses to changes in 6-aminohexanoate and temperature. Analytical Chemistry Insights 2: 17–29.
|
[18] | Kornblatt JA, Rajotte I, Heitz F (2001) Reaction of canine plasminogen with 6-aminohexanoate: a thermodynamic study combining fluorescence, circular dichroism, and isothermal titration calorimetry. Biochemistry 40: 3639–3647. doi: 10.1021/bi001857b
|
[19] | Karbassi F, Quiros V, Pancholi V, Kornblatt MJ (2010) Dissociation of the octameric enolase from S. pyogenes—one interface stabilizes another. PLoS One 5: e8810 10.1371/journal.pone.0008810 [doi].
|
[20] | Daghestani HN, Day BW (2010) Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors. Sensors 10: 9630–9646. doi: 10.3390/s101109630
|
[21] | Sonesson AW, Callisen TH, Brismar H, Elofsson UM (2007) A comparison between dual polarization interferometry (DPI) and surface plasmon resonance (SPR) for protein adsorption studies. Colloids and Surfaces B-Biointerfaces 54: 236–240. doi: 10.1016/j.colsurfb.2006.10.028
|
[22] | Swann MJ, Peel LL, Carrington S, Freeman NJ (2004) Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions. Analytical Biochemistry 329: 190–198. doi: 10.1016/j.ab.2004.02.019
|
[23] | Feng XY, Gao F, Qin PY, Ma GH, Su ZG, Ge J, et al. (2013) Real Time Monitoring of On-Chip Coenzyme Regeneration with SPR and DPI. Analytical Chemistry 85: 2370–2376. doi: 10.1021/ac303392a
|
[24] | Coffey PD, Swann MJ, Waigh TA, Mu QS, Lu JR (2013) The structure and mass of heterogeneous thin films measured with dual polarization interferometry and ellipsometry. Rsc Advances 3: 3316–3324. doi: 10.1039/c2ra22911k
|
[25] | Fernandez DI, Le Brun AP, Lee TH, Bansal P, Aguilar MI, et al. (2013) Structural effects of the antimicrobial peptide maculatin 1.1 on supported lipid bilayers. Eur Biophys J 42: 47–59 10.1007/s00249-012-0796-6 [doi].
|
[26] | Hirst DJ, Lee TH, Swann MJ, Unabia S, Park Y, et al. (2011) Effect of acyl chain structure and bilayer phase state on binding and penetration of a supported lipid bilayer by HPA3. Eur Biophys J 40: 503–514 10.1007/s00249-010-0664-1 [doi].
|
[27] | Lee TH, Hall KN, Swann MJ, Popplewell JF, Unabia S, Park Y, et al. (2010) The membrane insertion of helical antimicrobial peptides from the N-terminus of Helicobacter pylori ribosomal protein L1. Biochim Biophys Acta 1798: 544–557 S0005-2736(10)00031-3 [pii];10.1016/j.bbamem.2010.01.014 [doi].
|
[28] | Lee TH, Heng C, Swann MJ, Gehman JD, Separovic F, et al. (2010) Real-time quantitative analysis of lipid disordering by aurein 1.2 during membrane adsorption, destabilisation and lysis. Biochim Biophys Acta 1798: 1977–1986 S0005-2736(10)00221-X [pii];10.1016/j.bbamem.2010.06.023 [doi].
|
[29] | Balhara V, Schmidt R, Gorr SU, Dewolf C (2013) Membrane selectivity and biophysical studies of the antimicrobial peptide GL13K. Biochim Biophys Acta 1828: 2193–2203 S0005-2736(13)00180-6 [pii];10.1016/j.bbamem.2013.05.027 [doi].
|
[30] | Osborne MJ, Volpon L, Kornblatt JA, Culjkovic-Kraljacic B, Baguet A, et al. (2013) eIF4E3 acts as a tumor suppressor by utilizing an atypical mode of methyl-7-guanosine cap recognition. Proc Natl Acad Sci U S A 110: 3877–3882 1216862110 [pii];10.1073/pnas.1216862110 [doi].
|
[31] | Kornblatt JA, English AM (1986) The binding of porphyrin cytochrome c to yeast cytochrome c peroxidase. A fluorescence study of the number of sites and their sensitivity to salt. Eur J Biochem 155: 505–511. doi: 10.1111/j.1432-1033.1986.tb09517.x
|
[32] | Langmuir I (1916) The Constitution and Fundamental Properties of Solids and Liquids, Part 1. J Am Chem Soc 38: 2221–2295. doi: 10.1021/ja02268a002
|
[33] | Alkjaersig N, Fletcher AP, Sherry S (1959) vi-Aminocaproic acid: an inhibitor of plasminogen activation. J Biol Chem 234: 832–837.
|
[34] | Okamoto S, Oshiba S, Mihara H, Okamoto U (1968) Synthetic inhibitors of fibrinolysis: in vitro and in vivo mode of action. Ann N Y Acad Sci 146: 414–429. doi: 10.1111/j.1749-6632.1968.tb20303.x
|
[35] | An SS, Carreno C, Marti DN, Schaller J, Albericio F, et al. (1998) Lysine-50 is a likely site for anchoring the plasminogen N-terminal peptide to lysine-binding kringles. Protein Sci 7: 1960–1969. doi: 10.1002/pro.5560070911
|
[36] | Cockell CS, Marshall JM, Dawson KM, Cederholm-Williams SA, Ponting CP (1998) Evidence that the conformation of unliganded human plasminogen is maintained via an intramolecular interaction between the lysine-binding site of kringle 5 and the N-terminal peptide. Biochem J 333 (Pt 1): 99–105.
|
[37] | Kornblatt JA, Schuck P (2005) Influence of temperature on the conformation of canine plasminogen: an analytical ultracentrifugation and dynamic light scattering study. Biochemistry 44: 13122–13131. doi: 10.1021/bi050895y
|
[38] | Kornblatt JA (2000) Understanding the fluorescence changes of human plasminogen when it binds the ligand, 6-aminohexanoate: a synthesis. Biochim Biophys Acta 1481: 1–10. doi: 10.1016/s0167-4838(00)00119-9
|
[39] | Shimojo T, Onishi T (1967) Studies on membrane model. I. Surface pressure and surface potential of pure phospholipid monolayers. J Biochem 61: 89–95.
|
[40] | Pan J, Heberle FA, Tristram-Nagle S, Szymanski M, Koepfinger M, Katsaras J, et al. (2012) Molecular structures of fluid phase phosphatidylglycerol bilayers as determined by small angle neutron and X-ray scattering. Biochim Biophys Acta 1818: 2135–2148 S0005-2736(12)00155-1 [pii];10.1016/j.bbamem.2012.05.007 [doi].
|
[41] | Burke LI, Patil GS, Panganamala RV, Geer JC, Cornwell DG (1973) Surface areas of naturally occurring lipid classes and the quantitative microdetermination of lipids. J Lipid Res 14: 9–15.
|
[42] | Waner MJ, Gilchrist M, Schindler M, Dantus M (1998) Imaging the molecular dimensions and oligomerization of proteins at liquid/solid interfaces. Journal of Physical Chemistry B 102: 1649–1657. doi: 10.1021/jp9732219
|
[43] | Vorbeck ML, Marinetti GV (1965) Intracellular distribution and characterization of the lipids of Streptococcus faecalis (9790). Biochemistry 4: 296–305. doi: 10.1021/bi00878a018
|
[44] | Toledo A, Coleman JL, Kuhlow CJ, Crowley JT, Benach JL (2012) The enolase of Borrelia burgdorferi is a plasminogen receptor released in outer membrane vesicles. Infect Immun 80: 359–368 IAI.05836-11 [pii];10.1128/IAI.05836-11 [doi].
|
[45] | Hurmalainen V, Edelman S, Antikainen J, Baumann M, Lahteenmaki K, et al. (2007) Extracellular proteins of Lactobacillus crispatus enhance activation of human plasminogen. Microbiology 153: 1112–1122 153/4/1112 [pii];10.1099/mic.0.2006/000901-0 [doi].
|
[46] | Conejero-Lara F, Parrado J, Azuaga AI, Dobson CM, Ponting CP (1998) Analysis of the interactions between streptokinase domains and human plasminogen. Protein Sci 7: 2190–2199. doi: 10.1002/pro.5560071017
|