全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Targeted Biomarker Profiling of Matched Primary and Metastatic Estrogen Receptor Positive Breast Cancers

DOI: 10.1371/journal.pone.0088401

Full-Text   Cite this paper   Add to My Lib

Abstract:

Patients with newly diagnosed, early stage estrogen receptor positive (ER+) breast cancer often show disease free survival in excess of five years following surgery and systemic adjuvant therapy. An important question is whether diagnostic tumor tissue from the primary lesion offers an accurate molecular portrait of the cancer post recurrence and thus may be used for predictive diagnostic purposes for patients with relapsed, metastatic disease. As the class I phosphatidylinositol 3' kinase (PI3K) pathway is frequently activated in ER+ breast cancer and has been linked to acquired resistance to hormonal therapy, we hypothesized pathway status could evolve over time and treatment. Biomarker analyses were conducted on matched, asynchronous primary and metastatic tumors from 77 patients with ER+ breast cancer. We examined whether PIK3CA and AKT1 alterations or PTEN and Ki67 levels showed differences between primary and metastatic samples. We also sought to look more broadly at gene expression markers reflective of proliferation, molecular subtype, and key receptors and signaling pathways using an mRNA analysis platform developed on the Fluidigm BioMark? microfluidics system to measure the relative expression of 90 breast cancer related genes in formalin-fixed paraffin-embedded (FFPE) tissue. Application of this panel of biomarker assays to matched tumor pairs showed a high concordance between primary and metastatic tissue, with generally few changes in mutation status, proliferative markers, or gene expression between matched samples. The collection of assays described here has been optimized for FFPE tissue and may have utility in exploratory analyses to identify patient subsets responsive to targeted therapies.

References

[1]  Aitken SJ, Thomas JS, Langdon SP, Harrison DJ, Faratian D (2010) Quantitative analysis of changes in ER, PR and HER2 expression in primary breast cancer and paired nodal metastases. Ann Oncol 21: 1254–1261. doi: 10.1093/annonc/mdp427
[2]  Liedtke C, Broglio K, Moulder S, Hsu L, Kau SW, et al. (2009) Prognostic impact of discordance between triple-receptor measurements in primary and recurrent breast cancer. Ann Oncol 20: 1953–1958. doi: 10.1093/annonc/mdp263
[3]  Pusztai L, Viale G, Kelly CM, Hudis CA (2010) Estrogen and HER-2 receptor discordance between primary breast cancer and metastasis. Oncologist 15: 1164–1168. doi: 10.1634/theoncologist.2010-0059
[4]  Miller TW, Balko JM, Arteaga CL (2011) Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. J Clin Oncol 29: 4452–4461. doi: 10.1200/jco.2010.34.4879
[5]  Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, et al. (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366: 520–529. doi: 10.1056/nejmoa1109653
[6]  Gonzalez-Angulo AM, Ferrer-Lozano J, Stemke-Hale K, Sahin A, Liu S, et al. (2011) PI3K pathway mutations and PTEN levels in primary and metastatic breast cancer. Mol Cancer Ther 10: 1093–1101. doi: 10.1158/1535-7163.mct-10-1089
[7]  Kalinsky K, Heguy A, Bhanot UK, Patil S, Moynahan ME (2011) PIK3CA mutations rarely demonstrate genotypic intratumoral heterogeneity and are selected for in breast cancer progression. Breast Cancer Res Treat 129: 635–643. doi: 10.1007/s10549-011-1601-4
[8]  Weigelt B, Glas AM, Wessels LF, Witteveen AT, Peterse JL, et al. (2003) Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci U S A 100: 15901–15905. doi: 10.1073/pnas.2634067100
[9]  O'Brien C, Wallin JJ, Sampath D, GuhaThakurta D, Savage H, et al. (2010) Predictive biomarkers of sensitivity to the phosphatidylinositol 3' kinase inhibitor GDC-0941 in breast cancer preclinical models. Clin Cancer Res 16: 3670–3683. doi: 10.1158/1078-0432.ccr-09-2828
[10]  Hoeflich KP, O'Brien C, Boyd Z, Cavet G, Guerrero S, et al. (2009) In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models. Clin Cancer Res 15: 4649–4664. doi: 10.1158/1078-0432.ccr-09-0317
[11]  Patel R, Tsan A, Tam R, Desai R, Schoenbrunner N, et al. (2012) Mutation scanning using MUT-MAP, a high-throughput, microfluidic chip-based, multi-analyte panel. PLoS One 7: e51153. doi: 10.1371/journal.pone.0051153
[12]  Shames DS, Carbon J, Walter K, Jubb AM, Kozlowski C, et al. (2013) High Heregulin Expression Is Associated with Activated HER3 and May Define an Actionable Biomarker in Patients with Squamous Cell Carcinomas of the Head and Neck. PLoS One 8: e56765. doi: 10.1371/journal.pone.0056765
[13]  Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95: 14863–14868. doi: 10.1073/pnas.95.25.14863
[14]  Team RDC (2008) R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing. Vienna, Austria.
[15]  Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3. doi: 10.2202/1544-6115.1027
[16]  Dowsett M, Nielsen TO, A'Hern R, Bartlett J, Coombes RC, et al. (2011) Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group. J Natl Cancer Inst 103: 1656–1664. doi: 10.1093/jnci/djr393
[17]  Loi S, Haibe-Kains B, Majjaj S, Lallemand F, Durbecq V, et al. (2010) PIK3CA mutations associated with gene signature of low mTORC1 signaling and better outcomes in estrogen receptor-positive breast cancer. Proc Natl Acad Sci U S A 107: 10208–10213. doi: 10.1073/pnas.0907011107
[18]  Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, et al. (2008) An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68: 6084–6091. doi: 10.1158/0008-5472.can-07-6854
[19]  Fan C, Oh DS, Wessels L, Weigelt B, Nuyten DS, et al. (2006) Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355: 560–569. doi: 10.1056/nejmoa052933
[20]  Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, et al. (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10: 515–527. doi: 10.1016/j.ccr.2006.10.008
[21]  O'Brien C, Cavet G, Pandita A, Hu X, Haydu L, et al. (2008) Functional genomics identifies ABCC3 as a mediator of taxane resistance in HER2-amplified breast cancer. Cancer Res 68: 5380–5389. doi: 10.1158/0008-5472.can-08-0234
[22]  Lim E, Metzger-Filho O, Winer EP (2012) The natural history of hormone receptor-positive breast cancer. Oncology (Williston Park) 26: 688?694, 696.
[23]  Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, et al. (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366: 883–892. doi: 10.1056/nejmoa1113205
[24]  Ding L, Ellis MJ, Li S, Larson DE, Chen K, et al. (2010) Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464: 999–1005. doi: 10.1038/nature08989
[25]  Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, et al. (2012) Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486: 353–360.
[26]  Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, et al. (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486: 400–404.
[27]  TCGA (2012) Comprehensive molecular portraits of human breast tumours. Nature 490: 61–70.
[28]  Ellis MJ, Lin L, Crowder R, Tao Y, Hoog J, et al. (2010) Phosphatidyl-inositol-3-kinase alpha catalytic subunit mutation and response to neoadjuvant endocrine therapy for estrogen receptor positive breast cancer. Breast Cancer Res Treat 119: 379–390. doi: 10.1007/s10549-009-0575-y
[29]  Dupont Jensen J, Laenkholm AV, Knoop A, Ewertz M, Bandaru R, et al. (2011) PIK3CA mutations may be discordant between primary and corresponding metastatic disease in breast cancer. Clin Cancer Res 17: 667–677. doi: 10.1158/1078-0432.ccr-10-1133
[30]  Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, et al. (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448: 439–444. doi: 10.1038/nature05933
[31]  Saal LH, Holm K, Maurer M, Memeo L, Su T, et al. (2005) PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res 65: 2554–2559. doi: 10.1158/0008-5472-can-04-3913
[32]  Kalinsky K, Jacks LM, Heguy A, Patil S, Drobnjak M, et al. (2009) PIK3CA mutation associates with improved outcome in breast cancer. Clin Cancer Res 15: 5049–5059. doi: 10.1158/1078-0432.ccr-09-0632
[33]  Barbareschi M, Buttitta F, Felicioni L, Cotrupi S, Barassi F, et al. (2007) Different prognostic roles of mutations in the helical and kinase domains of the PIK3CA gene in breast carcinomas. Clin Cancer Res 13: 6064–6069. doi: 10.1158/1078-0432.ccr-07-0266
[34]  Mangone FR, Bobrovnitchaia IG, Salaorni S, Manuli E, Nagai MA (2012) PIK3CA exon 20 mutations are associated with poor prognosis in breast cancer patients. Clinics (Sao Paulo) 67: 1285–1290.
[35]  Paik S (2011) Is gene array testing to be considered routine now? Breast 20 Suppl 3S87–91. doi: 10.1016/s0960-9776(11)70301-0
[36]  Casas E, Kim J, Bendesky A, Ohno-Machado L, Wolfe CJ, et al. (2011) Snail2 is an essential mediator of Twist1-induced epithelial mesenchymal transition and metastasis. Cancer Res 71: 245–254. doi: 10.1158/0008-5472.can-10-2330
[37]  Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, et al. (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117: 927–939. doi: 10.1016/j.cell.2004.06.006
[38]  Cheang MC, Chia SK, Voduc D, Gao D, Leung S, et al. (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101: 736–750. doi: 10.1093/jnci/djp082
[39]  Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, et al. (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486: 346–352. doi: 10.1038/nature10983

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133