全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Acute Morphine Treatments Alleviate Tremor in 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Treated Monkeys

DOI: 10.1371/journal.pone.0088404

Full-Text   Cite this paper   Add to My Lib

Abstract:

Parkinson’s disease (PD) is a chronic and progressive neurodegenerative disorder associated with decreased striatal dopamine levels. Morphine has been found to elevate dopamine levels, which indicates a potential therapeutic effect in PD treatment that has not been investigated previously. To evaluate this hypothesis, an investigation of the acute effects of morphine on PD symptoms was carried out in male rhesus PD monkeys that had been induced with MPTP. All MPTP induced monkeys displayed progressive and irreversible PD motor symptoms. The behavioral response of these animals to morphine and L-Dopa were quantified with the Kurlan scale. It was found that L-Dopa alleviated bradykinesia, but did not significantly improve tremor. In contrast, acute morphine alleviated tremor significantly. These results suggested that, compared to L-Dopa, morphine has different therapeutic effects in PD therapy and may act through different biological mechanisms to alleviate PD symptoms.

References

[1]  Mandemakers W, Morais VA, De Strooper B (2007) A cell biological perspective on mitochondrial dysfunction in Parkinson disease and other neurodegenerative diseases. J Cell Sci 120: 1707–1716. doi: 10.1242/jcs.03443
[2]  Nagatsu T, Sawada M (2005) Inflammatory process in Parkinson's disease: role for cytokines. Curr Pharm Des 11: 999–1016. doi: 10.2174/1381612053381620
[3]  de Vries RL, Przedborski S (2013) Mitophagy and Parkinson's disease: Be eaten to stay healthy. Mol Cell Neurosci 55: 37–43. doi: 10.1016/j.mcn.2012.07.008
[4]  Fearnley JM, Lees AJ (1991) Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 114 ( Pt 5): 2283–2301. doi: 10.1093/brain/114.5.2283
[5]  Dauer W, Przedborski S (2003) Parkinson's disease: mechanisms and models. Neuron 39: 889–909. doi: 10.1016/s0896-6273(03)00568-3
[6]  Perfeito R, Cunha-Oliveira T, Rego AC (2012) Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease—resemblance to the effect of amphetamine drugs of abuse. Free Radic Biol Med 53: 1791–1806. doi: 10.1016/j.freeradbiomed.2012.08.569
[7]  Emborg ME (2007) Nonhuman primate models of Parkinson's disease. ILAR J 48: 339–355. doi: 10.1093/ilar.48.4.339
[8]  Muller T (2013) Pharmacokinetic considerations for the use of levodopa in the treatment of Parkinson disease: focus on levodopa/carbidopa/entacapone for treatment of levodopa-associated motor complications. Clin Neuropharmacol 36: 84–91. doi: 10.1097/wnf.0b013e31828f3385
[9]  Bekheet SH (2010) Morphine sulphate induced histopathological and histochemical changes in the rat liver. Tissue Cell 42: 266–272. doi: 10.1016/j.tice.2010.06.001
[10]  Winger G, Woods JH (2001) The effects of chronic morphine on behavior reinforced by several opioids or by cocaine in rhesus monkeys. Drug Alcohol Depend 62: 181–189. doi: 10.1016/s0376-8716(00)00166-6
[11]  Boutrel B (2008) A neuropeptide-centric view of psychostimulant addiction. Br J Pharmacol 154: 343–357. doi: 10.1038/bjp.2008.133
[12]  De Vries TJ, Shippenberg TS (2002) Neural systems underlying opiate addiction. J Neurosci 22: 3321–3325.
[13]  Kieffer BL (1999) Opioids: first lessons from knockout mice. Trends Pharmacol Sci 20: 19–26. doi: 10.1016/s0165-6147(98)01279-6
[14]  Kalivas PW, Duffy P (1988) Effects of daily cocaine and morphine treatment on somatodendritic and terminal field dopamine release. J Neurochem 50: 1498–1504. doi: 10.1111/j.1471-4159.1988.tb03036.x
[15]  Devine DP, Wise RA (1994) Self-administration of morphine, DAMGO, and DPDPE into the ventral tegmental area of rats. J Neurosci 14: 1978–1984.
[16]  Nakagawa T, Suzuki Y, Nagayasu K, Kitaichi M, Shirakawa H, et al. (2011) Repeated exposure to methamphetamine, cocaine or morphine induces augmentation of dopamine release in rat mesocorticolimbic slice co-cultures. PLoS One 6: e24865. doi: 10.1371/journal.pone.0024865
[17]  Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12: 483–488.
[18]  Nestler EJ (1992) Molecular mechanisms of drug addiction. J Neurosci 12: 2439–2450.
[19]  Pierce RC, Kumaresan V (2006) The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 30: 215–238. doi: 10.1016/j.neubiorev.2005.04.016
[20]  Bontempi B, Sharp FR (1997) Systemic morphine-induced Fos protein in the rat striatum and nucleus accumbens is regulated by mu opioid receptors in the substantia nigra and ventral tegmental area. J Neurosci 17: 8596–8612.
[21]  Vermeulen RJ, Drukarch B, Sahadat MC, Goosen C, Schoffelmeer AN, et al. (1995) Morphine and naltrexone modulate D2 but not D1 receptor induced motor behavior in MPTP-lesioned monkeys. Psychopharmacology (Berl) 118: 451–459. doi: 10.1007/bf02245946
[22]  Samadi P, Gregoire L, Bedard PJ (2003) Opioid antagonists increase the dyskinetic response to dopaminergic agents in parkinsonian monkeys: interaction between dopamine and opioid systems. Neuropharmacology 45: 954–963. doi: 10.1016/s0028-3908(03)00249-1
[23]  Samadi P, Gregoire L, Bedard PJ (2004) The opioid agonist morphine decreases the dyskinetic response to dopaminergic agents in parkinsonian monkeys. Neurobiol Dis 16: 246–253. doi: 10.1016/j.nbd.2004.02.002
[24]  Samadi P, Gregoire L, Rouillard C, Bedard PJ (2005) Dyskinesias occur in response to saline and naltrexone alone after priming with combination of dopaminergic agents and naltrexone in the MPTP parkinsonian monkeys. Neurobiol Dis 19: 266–272. doi: 10.1016/j.nbd.2005.01.006
[25]  Samadi P, Bedard PJ, Rouillard C (2006) Opioids and motor complications in Parkinson's disease. Trends Pharmacol Sci 27: 512–517. doi: 10.1016/j.tips.2006.08.002
[26]  Berg D, Becker G, Reiners K (1999) Reduction of dyskinesia and induction of akinesia induced by morphine in two parkinsonian patients with severe sciatica. J Neural Transm 106: 725–728. doi: 10.1007/s007020050192
[27]  Bjorndal N, Casey DE, Gerlach J (1980) Enkephalin, morphine, and naloxone in tardive dyskinesia. Psychopharmacology (Berl) 69: 133–136. doi: 10.1007/bf00427638
[28]  Benninger DH, Thees S, Kollias SS, Bassetti CL, Waldvogel D (2009) Morphological differences in Parkinson's disease with and without rest tremor. J Neurol 256: 256–263. doi: 10.1007/s00415-009-0092-2
[29]  Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, et al. (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyri?dine. Proc Natl Acad Sci U S A 80: 4546–4550. doi: 10.1073/pnas.80.14.4546
[30]  Xu CL, Wang QZ, Sun LM, Li XM, Deng JM, et al. (2012) Asiaticoside: attenuation of neurotoxicity induced by MPTP in a rat model of Parkinsonism via maintaining redox balance and up-regulating the ratio of Bcl-2/Bax. Pharmacol Biochem Behav 100: 413–418. doi: 10.1016/j.pbb.2011.09.014
[31]  Javitch JA, D'Amato RJ, Strittmatter SM, Snyder SH (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci U S A 82: 2173–2177. doi: 10.1073/pnas.82.7.2173
[32]  Jenner P (1989) Clues to the mechanism underlying dopamine cell death in Parkinson's disease. J Neurol Neurosurg Psychiatry Suppl: 22–28.
[33]  Bergman H, Raz A, Feingold A, Nini A, Nelken I, et al. (1998) Physiology of MPTP tremor. Mov Disord 13 Suppl 329–34. doi: 10.1002/mds.870131305
[34]  Elsworth JD, Taylor JR, Sladek JR Jr, Collier TJ, Redmond DE Jr, et al. (2000) Striatal dopaminergic correlates of stable parkinsonism and degree of recovery in old-world primates one year after MPTP treatment. Neuroscience 95: 399–408. doi: 10.1016/s0306-4522(99)00437-6
[35]  Schneider JS, Kovelowski CJ 2nd (1990) Chronic exposure to low doses of MPTP. I. Cognitive deficits in motor asymptomatic monkeys. Brain Res 519: 122–128. doi: 10.1016/0006-8993(90)90069-n
[36]  Benazzouz A, Gross C, Dupont J, Bioulac B (1992) MPTP induced hemiparkinsonism in monkeys: behavioral, mechanographic, electromyographic and immunohistochemical studies. Exp Brain Res 90: 116–120. doi: 10.1007/bf00229262
[37]  Collier TJ, Steece-Collier K, Kordower JH (2003) Primate models of Parkinson's disease. Exp Neurol 183: 258–262. doi: 10.1016/s0014-4886(03)00246-2
[38]  Liu N, Liu Y, Fan Y, Yu H, Wilson FA, et al. (2005) EEG activities in the orbitofrontal cortex and dorsolateral prefrontal cortex during the development of morphine dependence, tolerance and withdrawal in rhesus monkeys. Brain Res 1053: 137–145. doi: 10.1016/j.brainres.2005.06.037
[39]  Smith RD, Zhang Z, Kurlan R, McDermott M, Gash DM (1993) Developing a stable bilateral model of parkinsonism in rhesus monkeys. Neuroscience 52: 7–16. doi: 10.1016/0306-4522(93)90176-g
[40]  Hoehn MM, Yahr MD (2001) Parkinsonism: onset, progression, and mortality. 1967. Neurology 57: S11–26. doi: 10.1212/wnl.17.5.427
[41]  Mounayar S, Boulet S, Tande D, Jan C, Pessiglione M, et al. (2007) A new model to study compensatory mechanisms in MPTP-treated monkeys exhibiting recovery. Brain 130: 2898–2914. doi: 10.1093/brain/awm208
[42]  Pare D, Curro'Dossi R, Steriade M (1990) Neuronal basis of the parkinsonian resting tremor: a hypothesis and its implications for treatment. Neuroscience 35: 217–226. doi: 10.1016/0306-4522(90)90077-h
[43]  Vingerhoets FJ, Schulzer M, Calne DB, Snow BJ (1997) Which clinical sign of Parkinson's disease best reflects the nigrostriatal lesion? Ann Neurol 41: 58–64. doi: 10.1002/ana.410410111
[44]  Fricchione G, Stefano GB (2005) Placebo neural systems: nitric oxide, morphine and the dopamine brain reward and motivation circuitries. Med Sci Monit 11: MS54–65.
[45]  Stefano GB, Kream RM (2010) Dopamine, morphine, and nitric oxide: an evolutionary signaling triad. CNS Neurosci Ther 16: e124–137. doi: 10.1111/j.1755-5949.2009.00114.x
[46]  Charron G, Doudnikoff E, Laux A, Berthet A, Porras G, et al. (2011) Endogenous morphine-like compound immunoreactivity increases in parkinsonism. Brain 134: 2321–2338. doi: 10.1093/brain/awr166
[47]  Hantraye P, Varastet M, Peschanski M, Riche D, Cesaro P, et al. (1993) Stable parkinsonian syndrome and uneven loss of striatal dopamine fibres following chronic MPTP administration in baboons. Neuroscience 53: 169–178. doi: 10.1016/0306-4522(93)90295-q
[48]  Bezard E, Imbert C, Deloire X, Bioulac B, Gross CE (1997) A chronic MPTP model reproducing the slow evolution of Parkinson's disease: evolution of motor symptoms in the monkey. Brain Res 766: 107–112. doi: 10.1016/s0006-8993(97)00531-3
[49]  Mosharov EV, Larsen KE, Kanter E, Phillips KA, Wilson K, et al. (2009) Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron 62: 218–229. doi: 10.1016/j.neuron.2009.01.033
[50]  Guatteo E, Yee A, McKearney J, Cucchiaroni ML, Armogida M, et al. (2013) Dual effects of l-DOPA on nigral dopaminergic neurons. Exp Neurol.
[51]  Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications. N Engl J Med 318: 876–880. doi: 10.1056/nejm198804073181402
[52]  Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12: 366–375. doi: 10.1016/0166-2236(89)90074-x
[53]  Bergman H, Deuschl G (2002) Pathophysiology of Parkinson's disease: from clinical neurology to basic neuroscience and back. Mov Disord 17 Suppl 3S28–40. doi: 10.1002/mds.10140
[54]  Helmich RC, Hallett M, Deuschl G, Toni I, Bloem BR (2012) Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain 135: 3206–3226. doi: 10.1093/brain/aws023
[55]  Jellinger KA (1999) Post mortem studies in Parkinson's disease—is it possible to detect brain areas for specific symptoms? J Neural Transm Suppl 56: 1–29.
[56]  Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, et al. (1991) Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337: 403–406. doi: 10.1016/0140-6736(91)91175-t
[57]  Helmich RC, Janssen MJ, Oyen WJ, Bloem BR, Toni I (2011) Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Ann Neurol 69: 269–281. doi: 10.1002/ana.22361
[58]  Hudzik TJ, Howell A, Payza K, Cross AJ (2000) Antiparkinson potential of delta-opioid receptor agonists. Eur J Pharmacol 396: 101–107. doi: 10.1016/s0014-2999(00)00209-0
[59]  Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 27: 107–144. doi: 10.1146/annurev.neuro.27.070203.144206

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133