Background Acute malarial anemia remains a major public health problem. Hepcidin, the major hormone controlling the availability of iron, is raised during acute and asymptomatic parasitemia. Understanding the role and mechanism of raised hepcidin and so reduced iron availability during infection is critical to establish evidence-based guidelines for management of malaria anemia. Our recent clinical evidence suggests a potential role of IL-10 in the regulation of hepcidin in patients with acute P. falciparum malaria. Methods We have measured secretion of hepcidin by primary macrophages and the hepatoma cell line HepG2 stimulated with IL-10, IL-6 and Plasmodium falciparum-infected erythrocytes. Findings We have observed that IL-10 and IL-6 production increased in primary macrophages when these cells were co-cultured with Plasmodium falciparum–infected erythrocytes. We found that IL-10 induced hepcidin secretion in primary macrophages in a dose-dependent manner but not in HepG2 cells. These effects were mediated through signal transducer and activator of transcription (STAT) 3-phosphorylation and completely abrogated by a specific STAT3 inhibitor. Conclusion IL-10 can directly regulate hepcidin in primary macrophages but not in HepG2 cells. This effect can be modulated by Plasmodium falciparum. The results are consistent with a role for IL-10 in modulating iron metabolism during acute phase of infection.
References
[1]
WHO (2008) Worldwide prevalence of anemia 1993–2005.
[2]
Crawley J (2004) Reducing the burden of anemia in infants and young children in malaria-endemic countries of Africa: from evidence to action. Am J Trop Med Hyg 71: 25–34.
[3]
Nweneka CV, Doherty CP, Cox S, Prentice A (2009) Iron delocalisation in the pathogenesis of malarial anaemia. Trans R Soc Trop Med Hyg 104: 175–184. doi: 10.1016/j.trstmh.2009.08.007
[4]
Lamikanra AA, Brown D, Potocnik A, Casals-Pascual C, Langhorne J, et al. (2007) Malarial anemia: of mice and men. Blood 110: 18–28. doi: 10.1182/blood-2006-09-018069
[5]
Bastin J, Drakesmith H, Rees M, Sargent I, Townsend A (2006) Localisation of proteins of iron metabolism in the human placenta and liver. Br J Haematol 134: 532–543. doi: 10.1111/j.1365-2141.2006.06216.x
[6]
Portugal S, Carret C, Recker M, Armitage AE, Goncalves LA, et al. (2011) Host-mediated regulation of superinfection in malaria. Nat Med 17: 732–737. doi: 10.1038/nm.2368
[7]
Schimanski LM, Drakesmith H, Talbott C, Horne K, James JR, et al. (2008) Ferroportin: lack of evidence for multimers. Blood Cells Mol Dis 40: 360–369. doi: 10.1016/j.bcmd.2007.09.007
[8]
Finch C (1994) Regulators of iron balance in humans. Blood 84: 1697–1702.
[9]
Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, et al. (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306: 2090–2093. doi: 10.1126/science.1104742
[10]
Armitage AE, Eddowes LA, Gileadi U, Cole S, Spottiswoode N, et al. (2011) Hepcidin regulation by innate immune and infectious stimuli. Blood. 118(15): 4129–39. doi: 10.1182/blood-2011-04-351957
[11]
Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, et al. (2004) IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 113: 1271–1276. doi: 10.1172/jci20945
[12]
Piperno A, Galimberti S, Mariani R, Pelucchi S, Ravasi G, et al. (2010) Modulation of hepcidin production during hypoxia-induced erythropoiesis in humans in vivo: data from the HIGHCARE project. Blood 117: 2953–2959. doi: 10.1182/blood-2010-08-299859
[13]
Cercamondi CI, Egli IM, Ahouandjinou E, Dossa R, Zeder C, et al. (2010) Afebrile Plasmodium falciparum parasitemia decreases absorption of fortification iron but does not affect systemic iron utilization: a double stable-isotope study in young Beninese women. Am J Clin Nutr 92: 1385–1392. doi: 10.3945/ajcn.2010.30051
Casals-Pascual C, Huang H, Lakhal-Littleton S, Thezenas ML, Kai O, et al. (2012) Hepcidin demonstrates a biphasic association with anemia in acute Plasmodium falciparum malaria. Haematologica. 97(11): 1695–8. doi: 10.3324/haematol.2012.065854
[16]
Roberts DJ, Craig AG, Berendt AR, Pinches R, Nash G, et al. (1992) Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 357: 689–692. doi: 10.1038/357689a0
[17]
Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193: 673–675. doi: 10.1126/science.781840
[18]
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262
[19]
Drakesmith H, Chen N, Ledermann H, Screaton G, Townsend A, et al. (2005) HIV-1 Nef down-regulates the hemochromatosis protein HFE, manipulating cellular iron homeostasis. Proc Natl Acad Sci U S A 102: 11017–11022. doi: 10.1073/pnas.0504823102
[20]
Oliveras-Verges A, Espel-Masferrer E (2008) Elevated basal hepcidin levels in the liver may inhibit the development of malaria infection: another piece towards solving the malaria puzzle? Med Hypotheses 70: 630–634. doi: 10.1016/j.mehy.2007.07.021
[21]
Tilg H, Ulmer H, Kaser A, Weiss G (2002) Role of IL-10 for induction of anemia during inflammation. J Immunol 169: 2204–2209. doi: 10.4049/jimmunol.169.4.2204
[22]
Casals-Pascual C, Kai O, Cheung JO, Williams S, Lowe B, et al. (2006) Suppression of erythropoiesis in malarial anemia is associated with hemozoin in vitro and in vivo. Blood 108: 2569–2577. doi: 10.1182/blood-2006-05-018697
[23]
Kossodo S, Monso C, Juillard P, Velu T, Goldman M, et al. (1997) Interleukin-10 modulates susceptibility in experimental cerebral malaria. Immunology 91: 536–540. doi: 10.1046/j.1365-2567.1997.00290.x
[24]
Kurtzhals JA, Adabayeri V, Goka BQ, Akanmori BD, Oliver-Commey JO, et al. (1998) Low plasma concentrations of interleukin 10 in severe malarial anaemia compared with cerebral and uncomplicated malaria. Lancet 351: 1768–1772. doi: 10.1016/s0140-6736(97)09439-7
[25]
Couper KN, Blount DG, Riley EM (2008) IL-10: the master regulator of immunity to infection. J Immunol 180: 5771–5777.
[26]
Burte F, Brown BJ, Orimadegun AE, Ajetunmobi WA, Afolabi NK, et al. (2013) Circulatory hepcidin is associated with the anti-inflammatory response but not with iron or anemic status in childhood malaria. Blood 121: 3016–3022. doi: 10.1182/blood-2012-10-461418