ApoA-II is the second most abundant protein on HDL making up ~20% of the total protein but its functions have still only been partially characterized. Recent methodological improvements have allowed for the recombinant expression and characterization of human apoA-II which shares only 55% sequence homology with murine apoA-II. Here we describe the purification of the two most common polymorphic variants of apoA-II found in inbred mouse strains, differing at 3 amino acid sites. C57BL/6 mice having variant apoA-IIa have lower plasma HDL levels than FVB/N mice that have variant apoA-IIb. Characterization of the helical structure of these two variants reveals a more alpha-helical structure for the FVB/N apoA-II. These changes do not alter the lipid or HDL binding of the two apoA-II variants, but significantly increase the ability of the FVB/N variant to promote both ABCA1 and ABCG1 mediated cellular cholesterol efflux. These differences may be differentially altering plasma HDL apoA-II levels. In vivo, neither C57 nor FVB apoA-II protein levels are affected by the absence of apoE, while an apoE/apoA-I double deficiency results in a 50% decrease of plasma FVB apoA-II but results in undetectable levels of C57 apoA-II in the plasma. FVB apoA-II is able to form an HDL particle in the absence of apoE or apoA-I.
References
[1]
Boden WE (2000) High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease: assessing the data from Framingham to the Veterans Affairs High–Density Lipoprotein Intervention Trial. Am J Cardiol 86: 19L–22L. doi: 10.1016/s0002-9149(00)01464-8
[2]
Eisenberg S (1984) High density lipoprotein metabolism. J Lipid Res 25: 1017–1058.
[3]
Pászty C, Maeda N, Verstuyft J, Rubin EM (1994) Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice. J Clin Invest 94: 899–903. doi: 10.1172/jci117412
[4]
Duverger N, Kruth H, Emmanuel F, Caillaud JM, Viglietta C, et al. (1996) Inhibition of atherosclerosis development in cholesterol-fed human apolipoprotein A-I-transgenic rabbits. Circulation 94: 713–717. doi: 10.1161/01.cir.94.4.713
[5]
Voyiaziakis E, Goldberg IJ, Plump AS, Rubin EM, Breslow JL, et al. (1998) ApoA-I deficiency causes both hypertriglyceridemia and increased atherosclerosis in human apoB transgenic mice. J Lipid Res 39: 313–321.
[6]
Moore RE, Kawashiri MA, Kitajima K, Secreto A, Millar JS, et al. (2003) Apolipoprotein A-I deficiency results in markedly increased atherosclerosis in mice lacking the LDL receptor. Arterioscler Thromb Vasc Biol 23: 1914–1920. doi: 10.1161/01.atv.0000092328.66882.f5
[7]
Moore RE, Navab M, Millar JS, Zimetti F, Hama S, et al. (2005) Increased atherosclerosis in mice lacking apolipoprotein A-I attributable to both impaired reverse cholesterol transport and increased inflammation. Circ Res 97: 763–771. doi: 10.1161/01.res.0000185320.82962.f7
[8]
Winkler K, Hoffmann MM, Seelhorst U, Wellnitz B, Boehm BO, et al. (2008) Apolipoprotein A-II Is a negative risk indicator for cardiovascular and total mortality: findings from the Ludwigshafen Risk and Cardiovascular Health Study. Clin Chem 54: 1405–1406. doi: 10.1373/clinchem.2008.103929
[9]
Birjmohun RS, Dallinga-Thie GM, Kuivenhoven JA, Stroes ES, Otvos JD, et al. (2007) Apolipoprotein A-II is inversely associated with risk of future coronary artery disease. Circulation 116: 2029–2035. doi: 10.1161/circulationaha.107.704031
[10]
Deeb SS, Takata K, Peng RL, Kajiyama G, Albers JJ (1990) A splice-junction mutation responsible for familial apolipoprotein A-II deficiency. Am J Hum Genet 46: 822–827.
Weng W, Breslow JL (1996) Dramatically decreased high density lipoprotein cholesterol, increased remnant clearance, and insulin hypersensitivity in apolipoprotein A-II knockout mice suggest a complex role for apolipoprotein A-II in atherosclerosis susceptibility. Proc Natl Acad Sci U S A 93: 14788–14794. doi: 10.1073/pnas.93.25.14788
[13]
Miller CG, Lee TD, LeBoeuf RC, Shively JE (1987) Primary structure of apolipoprotein A-II from inbred mouse strain BALB/c. J Lipid Res 28: 311–319.
[14]
Kitagawa K, Wang J, Mastushita T, Kogishi K, Hosokawa M, et al. (2003) Polymorphisms of mouse apolipoprotein A-II: seven alleles found among 41 inbred strains of mice. Amyloid 10: 207–214. doi: 10.3109/13506120309041737
[15]
Dansky HM, Charlton SA, Sikes JL, Heath SC, Simantov R, et al. (1999) Genetic background determines the extent of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 19: 1960–1968. doi: 10.1161/01.atv.19.8.1960
[16]
Teupser D, Persky AD, Breslow JL (2003) Induction of atherosclerosis by low-fat, semisynthetic diets in LDL receptor-deficient C57BL/6J and FVB/NJ mice: comparison of lesions of the aortic root, brachiocephalic artery, and whole aorta (en face measurement). Arterioscler Thromb Vasc Biol 23: 1907–1913. doi: 10.1161/01.atv.0000090126.34881.b1
[17]
Sontag TJ, Carnemolla R, Vaisar T, Reardon CA, Getz GS (2012) Naturally occurring variant of mouse apolipoprotein A-I alters the lipid and HDL association properties of the protein. J Lipid Res 53: 951–963. doi: 10.1194/jlr.m021154
[18]
Wang X, Korstanje R, Higgins D, Paigen B (2004) Haplotype analysis in multiple crosses to identify a QTL gene. Genome Res 14: 1767–1772. doi: 10.1101/gr.2668204
[19]
Doolittle MH, LeBoeuf RC, Warden CH, Bee LM, Lusis AJ (1990) A polymorphism affecting apolipoprotein A-II translational efficiency determines high density lipoprotein size and composition. J Biol Chem 265: 16380–16388.
[20]
Wang Y, Sawashita J, Qian J, Zhang B, Fu X, et al. (2011) ApoA-I deficiency in mice is associated with redistribution of apoA-II and aggravated AApoAII amyloidosis. J Lipid Res 52: 1461–1470. doi: 10.1194/jlr.m013235
[21]
Smith LE, Yang J, Goodman L, Huang X, Huang R, et al. (2012) High yield expression and purification of recombinant human apolipoprotein A-II in Escherichia coli. J Lipid Res 53: 1708–1715. doi: 10.1194/jlr.d028043
[22]
Johnson WC (1999) Analyzing protein circular dichroism spectra for accurate secondary structures. Proteins 35: 307–312. doi: 10.1002/(sici)1097-0134(19990515)35:3<307::aid-prot4>3.3.co;2-v
[23]
Lund-Katz S, Nguyen D, Dhanasekaran P, Kono M, Nickel M, et al. (2010) Surface plasmon resonance analysis of the mechanism of binding of apoA-I to high density lipoprotein particles. J Lipid Res 51: 606–617. doi: 10.1194/jlr.m002055
[24]
Wool GD, Reardon CA, Getz GS (2008) Apolipoprotein A-I mimetic peptide helix number and helix linker influence potentially anti-atherogenic properties. J Lipid Res 49: 1268–1283. doi: 10.1194/jlr.m700552-jlr200
Sankaranarayanan S, Oram JF, Asztalos BF, Vaughan AM, Lund-Katz S, et al. (2009) Effects of acceptor composition and mechanism of ABCG1-mediated cellular free cholesterol efflux. J Lipid Res 50: 275–284. doi: 10.1194/jlr.m800362-jlr200
[27]
Rogers DP, Roberts LM, Lebowitz J, Datta G, Anantharamaiah GM, et al. (1998) The lipid-free structure of apolipoprotein A-I: effects of amino-terminal deletions. Biochemistry 37: 11714–11725. doi: 10.1021/bi973112k
[28]
Smith LE, Davidson WS (2010) The role of hydrophobic and negatively charged surface patches of lipid-free apolipoprotein A-I in lipid binding and ABCA1-mediated cholesterol efflux. Biochim Biophys Acta 1801: 64–69. doi: 10.1016/j.bbalip.2009.09.012
[29]
Chou CY, Jen WP, Hsieh YH, Shiao MS, Chang GG (2006) Structural and functional variations in human apolipoprotein E3 and E4. J Biol Chem 281: 13333–13344. doi: 10.1074/jbc.m511077200
[30]
Fisher EA, Feig JE, Hewing B, Hazen SL, Smith JD (2012) High-density lipoprotein function, dysfunction, and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 32: 2813–2820. doi: 10.1161/atvbaha.112.300133
[31]
Cabana VG, Feng N, Reardon CA, Lukens J, Webb NR, et al. (2004) Influence of apoA-I and apoE on the formation of serum amyloid A-containing lipoproteins in vivo and in vitro. J Lipid Res 45: 317–325. doi: 10.1194/jlr.m300414-jlr200
[32]
Sorci-Thomas M, Prack MM, Dashti N, Johnson F, Rudel LL, et al. (1989) Differential effects of dietary fat on the tissue-specific expression of the apolipoprotein A-I gene: relationship to plasma concentration of high density lipoproteins. J Lipid Res 30: 1397–1403.
[33]
Osada J, Fernández-Sánchez A, Diaz-Morillo JL, Miró-Obradors MJ, Cebrián JA, et al. (1994) Differential effect of dietary fat saturation and cholesterol on hepatic apolipoprotein gene expression in rats. Atherosclerosis 108: 83–90. doi: 10.1016/0021-9150(94)90039-6
[34]
Lopez J, Latta M, Collet X, Vanloo B, Jung G, et al. (1994) Purification and characterization of recombinant human apolipoprotein A-II expressed in Escherichia coli. Eur J Biochem 225: 1141–1150. doi: 10.1111/j.1432-1033.1994.1141b.x
[35]
Natarajan P, Forte TM, Chu B, Phillips MC, Oram JF, et al. (2004) Identification of an apolipoprotein A-I structural element that mediates cellular cholesterol efflux and stabilizes ATP binding cassette transporter A1. J Biol Chem 279: 24044–24052. doi: 10.1074/jbc.m400561200
[36]
Tanaka M, Koyama M, Dhanasekaran P, Nguyen D, Nickel M, et al. (2008) Influence of tertiary structure domain properties on the functionality of apolipoprotein A-I. Biochemistry 47: 2172–2180. doi: 10.1021/bi702332b
[37]
Vedhachalam C, Narayanaswami V, Neto N, Forte TM, Phillips MC, et al. (2007) The C-terminal lipid-binding domain of apolipoprotein E is a highly efficient mediator of ABCA1-dependent cholesterol efflux that promotes the assembly of high-density lipoproteins. Biochemistry 46: 2583–2593. doi: 10.1021/bi602407r
[38]
Gelissen IC, Harris M, Rye KA, Quinn C, Brown AJ, et al. (2006) ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arterioscler Thromb Vasc Biol 26: 534–540. doi: 10.1161/01.atv.0000200082.58536.e1
[39]
Zhong S, Goldberg IJ, Bruce C, Rubin E, Breslow JL, et al. (1994) Human ApoA-II inhibits the hydrolysis of HDL triglyceride and the decrease of HDL size induced by hypertriglyceridemia and cholesteryl ester transfer protein in transgenic mice. J Clin Invest 94: 2457–2467. doi: 10.1172/jci117614
[40]
Hedrick CC, Castellani LW, Wong H, Lusis AJ (2001) In vivo interactions of apoA-II, apoA-I, and hepatic lipase contributing to HDL structure and antiatherogenic functions. J Lipid Res 42: 563–570.