全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

cmvIL-10 Stimulates the Invasive Potential of MDA-MB-231 Breast Cancer Cells

DOI: 10.1371/journal.pone.0088708

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cancer is the result of unregulated cell growth that leads to tumor formation, and in many cases, metastases. Although there are several risk factors associated with cancer, one area that remains poorly understood is the impact of infectious disease. Human cytomegalovirus (HCMV) is a member of the herpesvirus family that is highly prevalent in the population. HCMV usually causes clinical disease only in immune compromised individuals, but recent evidence suggests that HCMV may be strongly associated with some forms of cancer, particularly glioblastoma and breast cancer. We investigated the possibility that cmvIL-10, a viral cytokine with homology to human IL-10 that is secreted from infected cells, could act in a paracrine manner to alter the tumor microenvironment, induce cell signaling, and increase the invasive potential of cancer cells. We found that human MDA-MB-231 breast cancer cells express the IL-10 receptor and that exposure to cmvIL-10 results in activation of Stat3, a transcription factor strongly associated with enhanced metastatic potential and chemo-resistance. In addition, cmvIL-10 stimulated an increase in DNA synthesis and cell proliferation, protected MDA-MB-231 cells from etoposide-induced apoptosis, and also greatly enhanced chemotaxis toward epidermal growth factor (EGF). These results suggest a significant and wide-ranging role for cmvIL-10 in the progression of breast cancer and could have broad implications for the diagnosis and treatment of cancer in HCMV-positive patients.

References

[1]  Key TJ, Verkasalo PK, Banks E (2001) Epidemiology of breast cancer. Lancet Oncol 2: 133–140. doi: 10.1016/s1470-2045(00)00254-0
[2]  John A, Tuszynski G (2001) The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res 7: 14–23. doi: 10.1007/bf03032599
[3]  de la Hoz RE, Stephens G, Sherlock C (2002) Diagnosis and treatment approaches of CMV infections in adult patients. J Clin Virol 25 Suppl 2S1–12. doi: 10.1016/s1386-6532(02)00091-4
[4]  Damato EG, Winnen CW (2002) Cytomegalovirus infection: perinatal implications. J Obstet Gynecol Neonatal Nurs 31: 86–92. doi: 10.1111/j.1552-6909.2002.tb00026.x
[5]  Cobbs CS, Harkins L, Samanta M, Gillespie GY, Bharara S, et al. (2002) Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res 62: 3347–3350.
[6]  Cobbs CS, Soroceanu L, Denham S, Zhang W, Britt WJ, et al. (2007) Human cytomegalovirus induces cellular tyrosine kinase signaling and promotes glioma cell invasiveness. J Neurooncol 85: 271–280. doi: 10.1007/s11060-007-9423-2
[7]  Mitchell DA, Xie W, Schmittling R, Learn C, Friedman A, et al. (2008) Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro Oncol 10: 10–18. doi: 10.1215/15228517-2007-035
[8]  Samanta M, Harkins L, Klemm K, Britt WJ, Cobbs CS (2003) High prevalence of human cytomegalovirus in prostatic intraepithelial neoplasia and prostatic carcinoma. J Urol 170: 998–1002. doi: 10.1097/01.ju.0000080263.46164.97
[9]  Taher C, de Boniface J, Mohammad AA, Religa P, Hartman J, et al. (2013) High prevalence of human cytomegalovirus proteins and nucleic acids in primary breast cancer and metastatic sentinel lymph nodes. PLoS One 8: e56795. doi: 10.1371/journal.pone.0056795
[10]  Michaelis M, Doerr HW, Cinatl J (2009) The story of human cytomegalovirus and cancer: increasing evidence and open questions. Neoplasia 11: 1–9.
[11]  Sanchez V, Spector DH (2008) Subversion of cell cycle regulatory pathways. Curr Top Microbiol Immunol 325: 243–262. doi: 10.1007/978-3-540-77349-8_14
[12]  Hume AJ, Finkel JS, Kamil JP, Coen DM, Culbertson MR, et al. (2008) Phosphorylation of retinoblastoma protein by viral protein with cyclin-dependent kinase function. Science 320: 797–799. doi: 10.1126/science.1152095
[13]  McCormick AL (2008) Control of apoptosis by human cytomegalovirus. Curr Top Microbiol Immunol 325: 281–295. doi: 10.1007/978-3-540-77349-8_16
[14]  Skaletskaya A, Bartle LM, Chittenden T, McCormick AL, Mocarski ES, et al. (2001) A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc Natl Acad Sci U S A 98: 7829–7834. doi: 10.1073/pnas.141108798
[15]  Blaheta RA, Beecken WD, Engl T, Jonas D, Oppermann E, et al. (2004) Human cytomegalovirus infection of tumor cells downregulates NCAM (CD56): a novel mechanism for virus-induced tumor invasiveness. Neoplasia 6: 323–331. doi: 10.1593/neo.03418
[16]  Blaheta RA, Weich E, Marian D, Bereiter-Hahn J, Jones J, et al. (2006) Human cytomegalovirus infection alters PC3 prostate carcinoma cell adhesion to endothelial cells and extracellular matrix. Neoplasia 8: 807–816. doi: 10.1593/neo.06379
[17]  Scalzo AA, Corbett AJ, Rawlinson WD, Scott GM, Degli-Esposti MA (2007) The interplay between host and viral factors in shaping the outcome of cytomegalovirus infection. Immunol Cell Biol 85: 46–54. doi: 10.1038/sj.icb.7100013
[18]  Kotenko SV, Saccani S, Izotova LS, Mirochnitchenko OV, Pestka S (2000) Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc Natl Acad Sci U S A 97: 1695–1700. doi: 10.1073/pnas.97.4.1695
[19]  Slobedman B, Barry PA, Spencer JV, Avdic S, Abendroth A (2009) Virus-encoded homologs of cellular interleukin-10 and their control of host immune function. J Virol 83: 9618–9629. doi: 10.1128/jvi.01098-09
[20]  Spencer JV, Lockridge KM, Barry PA, Lin G, Tsang M, et al. (2002) Potent immunosuppressive activities of cytomegalovirus-encoded interleukin-10. J Virol 76: 1285–1292. doi: 10.1128/jvi.76.3.1285-1292.2002
[21]  Llanes-Fernandez L, Alvarez-Goyanes RI, Arango-Prado Mdel C, Alcocer-Gonzalez JM, Mojarrieta JC, et al. (2006) Relationship between IL-10 and tumor markers in breast cancer patients. Breast 15: 482–489. doi: 10.1016/j.breast.2005.09.012
[22]  Nicolini A, Carpi A, Rossi G (2006) Cytokines in breast cancer. Cytokine Growth Factor Rev 17: 325–337. doi: 10.1016/j.cytogfr.2006.07.002
[23]  Asadullah K, Sterry W, Volk HD (2003) Interleukin-10 therapy–review of a new approach. Pharmacol Rev 55: 241–269. doi: 10.1124/pr.55.2.4
[24]  Althwani AN, Najm MA (2011) The Role of Interleukin-10 in Women with metastatic Invasive Ductal Carcinoma. J Fac Med - Baghdad 53: 289–292.
[25]  Zeng L, O'Connor C, Zhang J, Kaplan AM, Cohen DA (2009) IL-10 promotes resistance to apoptosis and metastatic potential in lung tumor cell lines. Cytokine.
[26]  Zheng M, Bocangel D, Doneske B, Mhashilkar A, Ramesh R, et al. (2007) Human interleukin 24 (MDA-7/IL-24) protein kills breast cancer cells via the IL-20 receptor and is antagonized by IL-10. Cancer Immunol Immunother 56: 205–215. doi: 10.1007/s00262-006-0175-1
[27]  Zhang X, Liu P, Zhang B, Wang A, Yang M (2010) Role of STAT3 decoy oligodeoxynucleotides on cell invasion and chemosensitivity in human epithelial ovarian cancer cells. Cancer Genet Cytogenet 197: 46–53. doi: 10.1016/j.cancergencyto.2009.10.004
[28]  Spencer JV, Cadaoas J, Castillo PR, Saini V, Slobedman B (2008) Stimulation of B lymphocytes by cmvIL-10 but not LAcmvIL-10. Virology 374: 164–169. doi: 10.1016/j.virol.2007.11.031
[29]  Spencer JV (2007) The cytomegalovirus homolog of interleukin-10 requires phosphatidylinositol 3-kinase activity for inhibition of cytokine synthesis in monocytes. J Virol 81: 2083–2086. doi: 10.1128/jvi.01655-06
[30]  Harkins LE, Matlaf LA, Soroceanu L, Klemm K, Britt WJ, et al. (2010) Detection of human cytomegalovirus in normal and neoplastic breast epithelium. Herpesviridae 1: 8. doi: 10.1186/2042-4280-1-8
[31]  Wilkins-Port CE, Higgins CE, Freytag J, Higgins SP, Carlson JA, et al. (2007) PAI-1 is a Critical Upstream Regulator of the TGF-beta1/EGF-Induced Invasive Phenotype in Mutant p53 Human Cutaneous Squamous Cell Carcinoma. J Biomed Biotechnol 2007: 85208. doi: 10.1155/2007/85208
[32]  Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57–70. doi: 10.1016/s0092-8674(00)81683-9
[33]  Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 646–674. doi: 10.1016/j.cell.2011.02.013
[34]  Levy DE, Lee C-K (2002) What does Stat3 do? Journal of Clinical Investigation 109: 1143–1148. doi: 10.1172/jci0215650
[35]  Deng J-Y, Sun D, Liu X-Y, Pan Y, Liang H (2010) STAT-3 correlates with lymph node metastasis and cell survival in gastric cancer. World Journal of Gastroenterology 16: 5380–5387. doi: 10.3748/wjg.v16.i42.5380
[36]  Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9: 798–809. doi: 10.1038/nrc2734
[37]  Gritsko T, Williams A, Turkson J, Kaneko S, Bowman T, et al. (2006) Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clinical Cancer Research 12: 11–19. doi: 10.1158/1078-0432.ccr-04-1752

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133