全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Sublethal Effects of CuO Nanoparticles on Mozambique Tilapia (Oreochromis mossambicus) Are Modulated by Environmental Salinity

DOI: 10.1371/journal.pone.0088723

Full-Text   Cite this paper   Add to My Lib

Abstract:

The increasing use of manufactured nanoparticles (NP) in different applications has triggered the need to understand their putative ecotoxicological effects in the environment. Copper oxide nanoparticles (CuO NP) are toxic, and induce oxidative stress and other pathophysiological conditions. The unique properties of NP can change depending on the characteristics of the media they are suspended in, altering the impact on their toxicity to aquatic organisms in different environments. Here, Mozambique tilapia (O. mossambicus) were exposed to flame synthesized CuO NP (0.5 and 5 mg·L?1) in two environmental contexts: (a) constant freshwater (FW) and (b) stepwise increase in environmental salinity (SW). Sublethal effects of CuO NP were monitored and used to dermine exposure endpoints. Fish exposed to 5 mg·L?1 CuO in SW showed an opercular ventilation rate increase, whereas fish exposed to 5 mg·L?1 in FW showed a milder response. Different effects of CuO NP on antioxidant enzyme activities, accumulation of transcripts for metal-responsive genes, GSH:GSSG ratio, and Cu content in fish gill and liver also demonstrate that additive osmotic stress modulates CuO NP toxicity. We conclude that the toxicity of CuO NP depends on the particular environmental context and that salinity is an important factor for modulating NP toxicity in fish.

References

[1]  ASTM-E2456-06 (2012) (2006) Standard Terminology Relating to Nanotechnology. ASTM International doi: 10.1520/e2456-06
[2]  Jańczewski D, Zhang Y, Das GK, Yi DK, Padmanabhan P, et al. (2011) Bimodal magnetic-fluorescent probes for bioimaging. Microsc Res Tech 74: 563–576. doi: 10.1002/jemt.20912
[3]  Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Science of The Total Environment 400: 396–414. doi: 10.1016/j.scitotenv.2008.06.042
[4]  Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269: 105–119. doi: 10.1016/j.tox.2009.08.016
[5]  Poole CP, Owens FJ (2003) Introduction to nanotechnology: Hoboken: Wiley-Interscience.
[6]  Nel A, Xia T, M?dler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311: 622–627. doi: 10.1126/science.1114397
[7]  Aitken RJ, Chaudhry MQ, Boxall AB, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med (Lond) 56: 300–306. doi: 10.1093/occmed/kql051
[8]  Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, et al. (2012) Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomedicine 7: 6003–6009. doi: 10.2147/ijn.s35347
[9]  Carnes CL, Klabunde KJ (2003) The catalytic methanol synthesis over nanoparticle metal oxide catalysts. Journal of Molecular Catalysis A: Chemical 194: 227–236. doi: 10.1016/s1381-1169(02)00525-3
[10]  Dai P, Mook HA, Aeppli G, Hayden SM, Dogan F (2000) Resonance as a measure of pairing correlations in the high-Tc superconductor YBa2Cu3O6.6. Nature 406: 965–968. doi: 10.1038/35023094
[11]  Mahapatra O, Bhagat M, Gopalakrishnan C, Arunachalam KD (2008) Ultrafine dispersed CuO nanoparticles and their antibacterial activity. Journal of Experimental Nanoscience 3: 185–193. doi: 10.1080/17458080802395460
[12]  Zhang J, Liu J, Peng Q, Wang X, Li Y (2006) Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chemistry of materials 18: 867–871. doi: 10.1021/cm052256f
[13]  Chang Y-N, Zhang M, Xia L, Zhang J, Xing G (2012) The Toxic Effects and Mechanisms of CuO and ZnO Nanoparticles. Materials 5: 2850–2871. doi: 10.3390/ma5122850
[14]  Lin S, Zhao Y, Xia T, Meng H, Ji Z, et al. (2011) High content screening in zebrafish speeds up hazard ranking of transition metal oxide nanoparticles. Acs Nano 5: 7284–7295. doi: 10.1021/nn202116p
[15]  Karlsson H, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21: 1726–1732. doi: 10.1021/tx800064j
[16]  Lanone S, Rogerieux F, Geys J, Dupont A, Maillot-Marechal E, et al. (2009) Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6: 455–460. doi: 10.1186/1743-8977-6-14
[17]  Zhao J, Wang Z, Liu X, Xie X, Zhang K, et al. (2011) Distribution of CuO nanoparticles in juvenile carp (Cyprinus carpio) and their potential toxicity. J Hazard Mater 197: 304–310. doi: 10.1016/j.jhazmat.2011.09.094
[18]  Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, et al. (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Archives of Toxicology 87: 1181–1200. doi: 10.1007/s00204-013-1079-4
[19]  Buffet P-E, Richard M, Caupos F, Vergnoux A, Perrein-Ettajani H, et al. (2012) A Mesocosm Study of Fate and Effects of CuO Nanoparticles on Endobenthic Species (Scrobicularia plana, Hediste diversicolor). Environmental Science & Technology 47: 1620–1628. doi: 10.1021/es303513r
[20]  Pang C, Selck H, Banta GT, Misra SK, Berhanu D, et al. (2013) Bioaccumulation, toxicokinetics, and effects of copper from sediment spiked with aqueous Cu, nano-CuO, or micro-CuO in the deposit-feeding snail, Potamopyrgus antipodarum. Environ Toxicol Chem 32: 1561–1573. doi: 10.1002/etc.2216
[21]  Shaw BJ, Handy RD (2011) Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ Int 37: 1083–1097. doi: 10.1016/j.envint.2011.03.009
[22]  Batley GE, Kirby JK, McLaughlin MJ (2012) Fate and Risks of Nanomaterials in Aquatic and Terrestrial Environments. Accounts of Chemical Research 46: 854–862. doi: 10.1021/ar2003368
[23]  Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, et al. (2010) Release of silver nanoparticles from outdoor facades. Environmental Pollution 158: 2900–2905. doi: 10.1016/j.envpol.2010.06.009
[24]  Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, et al. (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environmental Pollution 156: 233–239. doi: 10.1016/j.envpol.2008.08.004
[25]  Boxall A, Chaudhry Q, Sinclair C, Jones A, Aitken R, et al. (2007) Current and future predicted environmental exposure to engineered nanoparticles. York Central Science Laboratory 70–90.
[26]  Gottschalk F, Ort C, Scholz R, Nowack B (2011) Engineered nanomaterials in rivers–Exposure scenarios for Switzerland at high spatial and temporal resolution. Environmental Pollution 159: 3439–3445. doi: 10.1016/j.envpol.2011.08.023
[27]  Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environmental Science & Technology 43: 9216–9222. doi: 10.1021/es9015553
[28]  Handy RD, von der Kammer F, Lead JR, Hassellov M, Owen R, et al. (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17: 287–314. doi: 10.1007/s10646-008-0199-8
[29]  Midander K, Cronholm P, Karlsson HL, Elihn K, M?ller L, et al. (2009) Surface Characteristics, Copper Release, and Toxicity of Nano-and Micrometer-Sized Copper and Copper (II) Oxide Particles: A Cross-Disciplinary Study. Small 5: 389–399. doi: 10.1002/smll.200801220
[30]  Das GK, Chan PP, Teo A, Loo JS, Anderson JM, et al. (2010) In vitro cytotoxicity evaluation of biomedical nanoparticles and their extracts. J Biomed Mater Res A 93: 337–346. doi: 10.1002/jbm.a.32533
[31]  Nel AE, Madler L, Velegol D, Xia T, Hoek EM, et al. (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8: 543–557. doi: 10.1038/nmat2442
[32]  Setyawati MI, Khoo PK, Eng BH, Xiong S, Zhao X, et al. (2013) Cytotoxic and genotoxic characterization of titanium dioxide, gadolinium oxide, and poly(lactic-co-glycolic acid) nanoparticles in human fibroblasts. J Biomed Mater Res A 101: 633–640. doi: 10.1002/jbm.a.34363
[33]  Kalbassi MR, Salari-joo H, Johari A (2011) Toxicity of Silver Nanoparticles in Aquatic Ecosystems: Salinity as the Main Cause in Reducing Toxicity. Iranian Journal of Toxicology 5: 436–443.
[34]  Kashiwada S (2006) Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environmental health perspectives 114: 1697. doi: 10.1289/ehp.9209
[35]  Blanchard J, Grosell M (2006) Copper toxicity across salinities from freshwater to seawater in the euryhaline fish Fundulus heteroclitus: Is copper an ionoregulatory toxicant in high salinities? Aquatic Toxicology 80: 131–139. doi: 10.1016/j.aquatox.2006.08.001
[36]  Grosell M, Blanchard J, Brix KV, Gerdes R (2007) Physiology is pivotal for interactions between salinity and acute copper toxicity to fish and invertebrates. Aquatic Toxicology 84: 162–172. doi: 10.1016/j.aquatox.2007.03.026
[37]  Bielmyer GK, DeCarlo C, Morris C, Carrigan T (2013) The influence of salinity on acute nickel toxicity to the two euryhaline fish species, Fundulus heteroclitus and Kryptolebias marmoratus. Environmental Toxicology and Chemistry 32: 1354–1359. doi: 10.1002/etc.2185
[38]  Bielmyer GK, Bullington JB, DeCarlo CA, Chalk SJ, Smith K (2012) The Effects of Salinity on Acute Toxicity of Zinc to Two Euryhaline Species of Fish, Fundulus heteroclitus and Kryptolebias marmoratus. Integrative and Comparative Biology 52: 753–760. doi: 10.1093/icb/ics045
[39]  Keenleyside MH (1991) Cichlid fishes: behaviour, ecology and evolution: Springer.
[40]  Fiol DF, Sanmarti E, Lim AH, Kültz D (2011) A novel GRAIL E3 ubiquitin ligase promotes environmental salinity tolerance in euryhaline tilapia. Biochimica et Biophysica Acta (BBA)-General Subjects 1810: 439–445. doi: 10.1016/j.bbagen.2010.11.005
[41]  Stickney RR (1986) Tilapia Tolerance of Saline Waters: A Review. The Progressive Fish-Culturist 48: 161–167. doi: 10.1577/1548-8640(1986)48<161:ttosw>2.0.co;2
[42]  Yan B, Wang ZH, Zhao JL (2012) Mechanism of osmoregulatory adaptation in tilapia. Molecular Biology Reports 1–7. doi: 10.1007/s11033-012-2133-7
[43]  Anushia C (2012) Heavy metal induced enzyme response in tilapia mossambicus Tilapia mossambicus. IJPRBS 1: 371–385.
[44]  Wong CKC, Wong M (2000) Morphological and biochemical changes in the gills of Tilapia (Oreochromis mossambicus) to ambient cadmium exposure. Aquatic Toxicology 48: 517–527. doi: 10.1016/s0166-445x(99)00060-0
[45]  Govindasamy R, Rahuman AA (2012) Histopathological studies and oxidative stress of synthesized silver nanoparticles in Mozambique tilapia (Oreochromis mossambicus). Journal of Environmental Sciences 24: 1091–1098. doi: 10.1016/s1001-0742(11)60845-0
[46]  Karthigarani M, Navaraj P (2012) Impact of Nanoparticle On Enzymes Activity In Oreochromis Mossambicus. IJSTR 1 13: 17.
[47]  Barreto RE, Volpato GL (2011) Ventilation rates indicate stress-coping styles in Nile tilapia. Journal of biosciences 36: 851–855. doi: 10.1007/s12038-011-9111-4
[48]  Diamond JM, Parson MJ, Gruber D (2009) Rapid detection of sublethal toxicity using fish ventilatory behavior. Environmental Toxicology and Chemistry 9: 3–11. doi: 10.1897/1552-8618(1990)9[3:rdostu]2.0.co;2
[49]  Geiger SP, Torres JJ, Crabtree RE (2000) Air breathing and gill ventilation frequencies in juvenile tarpon, Megalops atlanticus: responses to changes in dissolved oxygen, temperature, hydrogen sulfide, and pH. Environmental Biology of Fishes 59: 181–190.
[50]  Abid AD, Anderson DS, Das GK, Van Winkle LS, Kennedy IM (2013) Novel lanthanide-labeled metal oxide nanoparticles improve the measurement of in vivo clearance and translocation. Part Fibre Toxicol 10: 1. doi: 10.1186/1743-8977-10-1
[51]  Dosev D, Guo B, Kennedy IM (2006) Photoluminescence of Eu3+: Y2O3 as an indication of crystal structure and particle size in nanoparticles synthesized by flame spray pyrolysis. Journal of aerosol science 37: 402–412. doi: 10.1016/j.jaerosci.2005.08.009
[52]  Rudin T, Wegner K, Pratsinis SE (2011) Uniform nanoparticles by flame-assisted spray pyrolysis (FASP) of low cost precursors. Journal of Nanoparticle Research 13: 2715–2725. doi: 10.1007/s11051-010-0206-x
[53]  Shi J, Abid AD, Kennedy IM, Hristova KR, Silk WK (2011) To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environ Pollut 159: 1277–1282. doi: 10.1016/j.envpol.2011.01.028
[54]  Baker MA, Cerniglia GJ, Zaman A (1990) Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal Biochem 190: 360–365. doi: 10.1016/0003-2697(90)90208-q
[55]  Belinky PA, Flikshtein N, Lechenko S, Gepstein S, Dosoretz CG (2003) Reactive oxygen species and induction of lignin peroxidase in Phanerochaete chrysosporium. Applied and environmental microbiology 69: 6500–6506. doi: 10.1128/aem.69.11.6500-6506.2003
[56]  Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, et al. (2012) Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC bioinformatics 13: 134. doi: 10.1186/1471-2105-13-134
[57]  Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic acids research 29: e45–e45. doi: 10.1093/nar/29.9.e45
[58]  Ruijter J, Ramakers C, Hoogaars W, Karlen Y, Bakker O, et al. (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic acids research 37: e45–e45. doi: 10.1093/nar/gkp045
[59]  Xu R, Wu C, Xu H (2007) Particle size and zeta potential of carbon black in liquid media. Carbon 45: 2806–2809. doi: 10.1016/j.carbon.2007.09.010
[60]  Jiang J, Oberd?rster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research 11: 77–89. doi: 10.1007/s11051-008-9446-4
[61]  Brant J, Lecoanet H, Wiesner M (2005) Aggregation and Deposition Characteristics of Fullerene Nanoparticles in Aqueous Systems. Journal of Nanoparticle Research 7: 545–553. doi: 10.1007/s11051-005-4884-8
[62]  Wang D, Tejerina B, Lagzi I, Kowalczyk B, Grzybowski BA (2011) Bridging interactions and selective nanoparticle aggregation mediated by monovalent cations. ACS Nano 5: 530–536. doi: 10.1021/nn1025252
[63]  Akaighe N, Depner SW, Banerjee S, Sharma VK, Sohn M (2012) The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee River humic acid/natural organic matter. Science of The Total Environment 441: 277–289. doi: 10.1016/j.scitotenv.2012.09.055
[64]  Atkinson M, Bingman C (1997) Elemental composition of commercial seasalts. Journal of Aquariculture and Aquatic Sciences 8: 39.
[65]  Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68: 253–278. doi: 10.1146/annurev.physiol.68.040104.110001
[66]  Zirong X, Shijun B (2007) Effects of waterborne Cd exposure on glutathione metabolism in Nile tilapia (Oreochromis niloticus) liver. Ecotoxicology and environmental safety 67: 89–94. doi: 10.1016/j.ecoenv.2006.04.006
[67]  Hamilton SJ, Mehrle PM (1986) Metallothionein in fish: Review of its importance in assessing stress from metal contaminants. Transactions of the American Fisheries Society 115: 596–609. doi: 10.1577/1548-8659(1986)115<596:mif>2.0.co;2
[68]  Uno T, Ishizuka M, Itakura T (2012) Cytochrome P450 (CYP) in fish. Environmental toxicology and pharmacology 34: 1–13. doi: 10.1016/j.etap.2012.02.004
[69]  Ceyhun SB, Aksakal E, Ekinci D, Erdo?an O, Beydemir ? (2011) Influence of cobalt and zinc exposure on mRNA expression profiles of metallothionein and cytocrome P450 in rainbow trout. Biological trace element research 144: 781–789. doi: 10.1007/s12011-011-9068-z
[70]  Sheader DL, Williams TD, Lyons BP, Chipman JK (2006) Oxidative stress response of European flounder (Platichthys flesus) to cadmium determined by a custom cDNA microarray. Marine environmental research 62: 33–44. doi: 10.1016/j.marenvres.2006.03.001
[71]  Woo S, Yum S, Park HS, Lee TK, Ryu JC (2009) Effects of heavy metals on antioxidants and stress-responsive gene expression in Javanese medaka (Oryzias javanicus). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 149: 289–299. doi: 10.1016/j.cbpc.2008.08.002
[72]  Kim IC, Kim YJ, Yoon YD, Kawamura S, Lee YS, et al. (2004) Cloning of cytochrome P450 1A (CYP1A) genes from the hermaphrodite fish Rivulus marmoratus and the Japanese medaka Oryzias latipes. Marine environmental research 58: 125–129. doi: 10.1016/j.marenvres.2004.03.006
[73]  Dang Z, Lock RA, Flik G, Bonga SEW (1999) Metallothionein response in gills of Oreochromis mossambicus exposed to copper in fresh water. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 277: R320–R331.
[74]  Kültz D (2012) The Combinatorial Nature of Osmosensing in Fishes. Physiology 27: 259–275. doi: 10.1152/physiol.00014.2012
[75]  Evans TG (2010) Co-ordination of osmotic stress responses through osmosensing and signal transduction events in fishes. J Fish Biol 76: 1903–1925. doi: 10.1111/j.1095-8649.2010.02590.x
[76]  Marshall WS (2012) Osmoregulation in Estuarine and Intertidal Fishes. In: Stephen D. McCormick APF, Colin JB, editors. Fish Physiology: Academic Press. pp. 395–434.
[77]  Schultz ET, McCormick SD (2012) Euryhalinity in An Evolutionary Context. In: Stephen D. McCormick APF, Colin JB, editors. Euryhaline fish: Academic Press. pp. 477–533.
[78]  Wheatly MG (1988) Integrated Responses to Salinity Fluctuation. American Zoologist 28: 65–77. doi: 10.1093/icb/28.1.65
[79]  Costa-Pierce B (2003) Rapid evolution of an established feral tilapia (Oreochromis spp.): the need to incorporate invasion science into regulatory structures. Biological Invasions 5: 71–84. doi: 10.1007/978-94-010-0169-4_7
[80]  Costa-Pierce BA (1997) From farmers to fishers: Developing reservoir aquaculture for people displaced by dams: World Bank-free PDF.
[81]  Ouattara NG, Bodinier C, Nègre-Sadargues G, D'Cotta H, Messad S, et al. (2009) Changes in gill ionocyte morphology and function following transfer from fresh to hypersaline waters in the tilapia Sarotherodon melanotheron. Aquaculture 290: 155–164. doi: 10.1016/j.aquaculture.2009.01.025
[82]  Griffith RW (1974) Environment and Salinity Tolerance in the Genus Fundulus. Copeia 1974: 319–331. doi: 10.2307/1442526
[83]  Tytler P, Calow P (1985) Fish Energetics: New Perspectives: Springer.
[84]  Crocker C, Cech J Jr (1998) Effects of hypercapnia on blood-gas and acid-base status in the white sturgeon, Acipenser transmontanus. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 168: 50–60. doi: 10.1007/s003600050120
[85]  Nonnotte G, Maxime V, Truchot J, Williot P, Peyraud C (1993) Respiratory responses to progressive ambient hypoxia in the sturgeon, Acipenser baeri. Respiration physiology 91: 71–82. doi: 10.1016/0034-5687(93)90090-w
[86]  Van Rooij J, Videler J (1996) Estimating oxygen uptake rate from ventilation frequency in the reef fish Sparisoma viride. Marine ecology progress series Oldendorf 132: 31–41. doi: 10.3354/meps132031
[87]  Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, et al. (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41: 8178–8186. doi: 10.1021/es071235e
[88]  Handy RD, Al-Bairuty G, Al-Jubory A, Ramsden CS, Boyle D, et al. (2011) Effects of manufactured nanomaterials on fishes: a target organ and body systems physiology approach. J Fish Biol 79: 821–853. doi: 10.1111/j.1095-8649.2011.03080.x
[89]  Bilberg K, Malte H, Wang T, Baatrup E (2010) Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquatic Toxicology 96: 159–165. doi: 10.1016/j.aquatox.2009.10.019
[90]  Smith CJ, Shaw BJ, Handy RD (2007) Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects. Aquatic Toxicology 82: 94–109. doi: 10.1016/j.aquatox.2007.02.003
[91]  Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquatic Toxicology 84: 415–430. doi: 10.1016/j.aquatox.2007.07.009
[92]  Mallatt J (1985) Fish gill structural changes induced by toxicants and other irritants: a statistical review. Canadian Journal of Fisheries and Aquatic Sciences 42: 630–648. doi: 10.1139/f85-083
[93]  McDonald D, Wood C (1993) Branchial mechanisms of acclimation to metals in freshwater fish. Fish ecophysiology 9: 300–321. doi: 10.1007/978-94-011-2304-4_12
[94]  Roberts SD, Powell MD (2003) Comparative ionic flux and gill mucous cell histochemistry: effects of salinity and disease status in Atlantic salmon (Salmo salar L.). Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology 134: 525–537. doi: 10.1016/s1095-6433(02)00327-6
[95]  Roberts SD, Powell MD (2005) The viscosity and glycoprotein biochemistry of salmonid mucus varies with species, salinity and the presence of amoebic gill disease. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 175: 1–11. doi: 10.1007/s00360-005-0473-5
[96]  Treuel L, Jiang X, Nienhaus GU (2013) New views on cellular uptake and trafficking of manufactured nanoparticles. J R Soc Interface 10: 20120939. doi: 10.1098/rsif.2012.0939
[97]  Gaiser BK, Fernandes TF, Jepson MA, Lead JR, Tyler CR, et al. (2012) Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ Toxicol Chem 31: 144–154. doi: 10.1002/etc.703
[98]  Scown TM, Goodhead RM, Johnston BD, Moger J, Baalousha M, et al. (2010) Assessment of cultured fish hepatocytes for studying cellular uptake and (eco)toxicity of nanoparticles. Environmental Chemistry 7: 36–49. doi: 10.1071/en09125
[99]  Scown TM, van Aerle R, Johnston BD, Cumberland S, Lead JR, et al. (2009) High Doses of Intravenously Administered Titanium Dioxide Nanoparticles Accumulate in the Kidneys of Rainbow Trout but with no Observable Impairment of Renal Function. Toxicological Sciences 109: 372–380. doi: 10.1093/toxsci/kfp064
[100]  Handy RD, Henry TB, Scown TM, Johnston BD, Tyler CR (2008) Manufactured nanoparticles: their uptake and effects on fish–a mechanistic analysis. Ecotoxicology 17: 396–409. doi: 10.1007/s10646-008-0205-1
[101]  Osborne OJ, Johnston BD, Moger J, Balousha M, Lead JR, et al. (2013) Effects of particle size and coating on nanoscale Ag and TiO2 exposure in zebrafish (Danio rerio) embryos. Nanotoxicology 7: 1315–1324. doi: 10.3109/17435390.2012.737484
[102]  Reeves JF, Davies SJ, Dodd NJF, Jha AN (2008) Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 640: 113–122. doi: 10.1016/j.mrfmmm.2007.12.010
[103]  Wu Y, Zhou Q (2012) Silver nanoparticles cause oxidative damage and histological changes in medaka (Oryzias latipes) after 14 days of exposure. Environmental Toxicology and Chemistry doi: 10.1002/etc.2038
[104]  Li H, Zhou Q, Wu Y, Fu J, Wang T, et al. (2009) Effects of waterborne nano-iron on medaka (Oryzias latipes): Antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicology and environmental safety 72: 684–692. doi: 10.1016/j.ecoenv.2008.09.027
[105]  Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology 101: 13–30. doi: 10.1016/j.aquatox.2010.10.006
[106]  Martinez-Alvarez R, Hidalgo M, Domezain A, Morales A, García-Gallego M, et al. (2002) Physiological changes of sturgeon Acipenser naccarii caused by increasing environmental salinity. Journal of experimental biology 205: 3699–3706.
[107]  Paital B, Chainy G (2010) Antioxidant defenses and oxidative stress parameters in tissues of mud crab (Scylla serrata) with reference to changing salinity. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 151: 142–151. doi: 10.1016/j.cbpc.2009.09.007
[108]  Hao L, Chen L, Hao J, Zhong N (2013) Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): A comparative study with its bulk counterparts. Ecotoxicology and environmental safety doi: 10.1016/j.ecoenv.2013.01.007
[109]  Fontaínhas-Fernandes A (1998) Tilapia production. In: Reis-Henriques M, editor. Aquaculture Handbook. California: Academic Press. pp. 135–150.
[110]  Sanchez W, Palluel O, Meunier L, Coquery M, Porcher J-M, et al. (2005) Copper-induced oxidative stress in three-spined stickleback: relationship with hepatic metal levels. Environmental toxicology and pharmacology 19: 177–183. doi: 10.1016/j.etap.2004.07.003
[111]  Cheung AP, Au CY, Chan WW, Chan KM (2010) Characterization and localization of metal-responsive-element-binding transcription factors from tilapia. Aquat Toxicol 99: 42–55. doi: 10.1016/j.aquatox.2010.03.017
[112]  Qiu J, Liu Y, Yu M, Pang Z, Chen W, et al. (2013) Identification and functional characterization of MRE-binding transcription factor (MTF) in Crassostrea gigas and its conserved role in metal-induced response. Mol Biol Rep 40: 3321–3331. doi: 10.1007/s11033-012-2407-0
[113]  Luther E, Schmidt M, Diendorf J, Epple M, Dringen R (2012) Upregulation of Metallothioneins After Exposure of Cultured Primary Astrocytes to Silver Nanoparticles. Neurochemical Research 37: 1639–1648. doi: 10.1007/s11064-012-0767-4
[114]  AshaRani P, Low Kah Mun G, Hande MP, Valiyaveettil S (2008) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. Acs Nano 3: 279–290. doi: 10.1021/nn800596w

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133