全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Anti-Tumor Effects of Novel 5-O-Acyl Plumbagins Based on the Inhibition of Mammalian DNA Replicative Polymerase Activity

DOI: 10.1371/journal.pone.0088736

Full-Text   Cite this paper   Add to My Lib

Abstract:

We previously found that vitamin K3 (menadione, 2-methyl-1,4-naphthoquinone) inhibits the activity of human mitochondrial DNA polymerase γ (pol γ). In this study, we focused on plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), and chemically synthesized novel plumbagins conjugated with C2:0 to C22:6 fatty acids (5-O-acyl plumbagins). These chemically modified plumbagins enhanced mammalian pol inhibition and their cytotoxic activity. Plumbagin conjugated with chains consisting of more than C18-unsaturated fatty acids strongly inhibited the activities of calf pol α and human pol γ. Plumbagin conjugated with oleic acid (C18:1-acyl plumbagin) showed the strongest suppression of human colon carcinoma (HCT116) cell proliferation among the ten synthesized 5-O-acyl plumbagins. The inhibitory activity on pol α, a DNA replicative pol, by these compounds showed high correlation with their cancer cell proliferation suppressive activity. C18:1-Acyl plumbagin selectively inhibited the activities of mammalian pol species, but did not influence the activities of other pols and DNA metabolic enzymes tested. This compound inhibited the proliferation of various human cancer cell lines, and was the cytotoxic inhibitor showing strongest inhibition towards HT-29 colon cancer cells (LD50 = 2.9 μM) among the nine cell lines tested. In an in vivo anti-tumor assay conducted on nude mice bearing solid tumors of HT-29 cells, C18:1-acyl plumbagin was shown to be a promising tumor suppressor. These data indicate that novel 5-O-acyl plumbagins act as anti-cancer agents based on mammalian DNA replicative pol α inhibition. Moreover, the results suggest that acylation of plumbagin is an effective chemical modification to improve the anti-cancer activity of vitamin K3 derivatives, such as plumbagin.

References

[1]  Berdis AJ (2008) DNA polymerases as therapeutic targets. Biochemistry (Moscow) 47: 8253–8260. doi: 10.1021/bi801179f
[2]  Sakaguchi K, Sugawara F, Mizushina Y (2002) Inhibitors of eukaryotic DNA polymerases. Seikagaku 74: 244–251.
[3]  Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nature Rev Cancer 3: 768–780. doi: 10.1038/nrc1189
[4]  Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134: 3479S–3485S.
[5]  Kornberg K, Baker TA (1992) DNA replication. FreemanW.D. and Co. New York, University Science Books. 197–225p.
[6]  Bebenek K, Kunkel TA (2004) Functions of DNA polymerases. Adv Protein Chem 69: 137–165. doi: 10.1016/s0065-3233(04)69005-x
[7]  Hubscher U, Maga G, Spadari S (2002) Eukaryotic DNA polymerases. Ann Rev Biochem 71: 133–163. doi: 10.1146/annurev.biochem.71.090501.150041
[8]  Loeb LA, Monnat RJ Jr (2008) DNA polymerases and human disease. Nature Rev Genet 9: 594–604. doi: 10.1038/nrg2345
[9]  Lange SS, Takata K, Wood RD (2011) DNA polymerases and cancer. Nature Rev Cancer 11: 96–110. doi: 10.1038/nrc2998
[10]  Mizushina Y (2009) Specific inhibitors of mammalian DNA polymerase species. Biosci Biotechnol Biochem 73: 1239–1251. doi: 10.1271/bbb.90121
[11]  Mizushina Y (2011) Screening of novel bioactive compounds from food components and nutrients. J Jpn Soc Nutr Food Sci 64: 377–384. doi: 10.4327/jsnfs.64.377
[12]  Mizushina Y, Yonezawa Y, Yoshida Y (2007) Selective inhibition of animal DNA polymerases by fat-soluble vitamins A, D, E and K, and their related compounds. Curr Enzyme Inhibition 3: 61–75. doi: 10.2174/157340807779815422
[13]  Sasaki R, Suzuki Y, Yonezawa Y, Ota Y, Okamoto Y, et al. (2008) DNA polymerase γ inhibition by vitamin K3 induces mitochondria-mediated cytotoxicity in human cancer cells. Cancer Sci 99: 1040–1048. doi: 10.1111/j.1349-7006.2008.00771.x
[14]  Monks TJ, Hanzlik RP, Cohen GM, Ross D, Graham DG (1992) Quinone chemistry and toxicity. Toxicol Appl Pharmacol 112: 2–16. doi: 10.1016/0041-008x(92)90273-u
[15]  O'Brien PJ (1991) Molecular mechanisms of quinone cytotoxicity. Chem Biol Interact 80: 1–41. doi: 10.1016/0009-2797(91)90029-7
[16]  Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ (2000) Role of quinones in toxicology. Chem Res Toxicol 13: 135–160. doi: 10.1021/tx9902082
[17]  Cho AK, Stefano ED, You Y, Rodriguez CE, Debra A, et al. (2004) Determination of Four Quinones in Diesel Exhaust Particles, SRM 1649a, and Atmospheric PM2.5. Aerosol Sci Technol 38: 68–81. doi: 10.1080/02786820390229471
[18]  Mossa JS, El-Feraly FS, Muhammad I (2004) Antimycobacterial constituents from Juniperus procera, Ferula communis and Plumbago zeylanica and their in vitro synergistic activity with isonicotinic acid hydrazide. Phytother Res 18: 934–937. doi: 10.1002/ptr.1420
[19]  Srinivas P, Gopinath G, Banerji A, Dinakar A, Srinivas G (2003) Plumbagin induces reactive oxygen species, which mediate apoptosis in human cervical cancer cells. Mol Carcinog 40: 201–211. doi: 10.1002/mc.20031
[20]  Tilak JC, Adhikari S, Devasagayam TP (2004) Antioxidant properties of Plumbagozeylanica, an Indian medicinal plant and its active ingredient, plumbagin. Redox Rep 9: 219–227. doi: 10.1179/135100004225005976
[21]  Ding Y, Chen ZJ, Liu S, Che D, Vetter M, et al. (2005) Inhibition of Nox-4 activity by plumbagin, a plant-derived bioactive naphthoquinone. J Pharm Pharmacol 57: 111–116. doi: 10.1211/0022357055119
[22]  Lee JH, Yeon JH, Kim H, Roh W, Chae J, et al. (2012) The natural anticancer agent plumbagin induces potent cytotoxicity in MCF-7 human breast cancer cells by inhibiting a PI-5 kinase for ROS generation. PLoS One 7: e45023. doi: 10.1371/journal.pone.0045023
[23]  Maruo S, Kuriyama I, Kuramochi K, Tsubaki K, Yoshida H, et al. (2011) Inhibitory effect of novel 5-O-acyl juglones on mammalian DNA polymerase activity, cancer cell growth and inflammatory response. Bioorg Med Chem 19: 5803–5812. doi: 10.1016/j.bmc.2011.08.023
[24]  Tamai K, Kojima K, Hanaichi T, Masaki S, Suzuki M, et al. (1988) Structural study of immunoaffinity-purified DNA polymerase α-DNA primase complex from calf thymus. Biochim Biophys Acta 950: 263–273. doi: 10.1016/0167-4781(88)90122-4
[25]  Date T, Yamaguchi M, Hirose F, Nishimoto Y, Tanihara K, et al. (1998) Expression of active rat DNA polymerase β in Escherichia coli. Biochemistry 27: 2983–2990. doi: 10.1021/bi00408a048
[26]  Umeda S, Muta T, Ohsato T, Takamatsu C, Hamasaki N, et al. (2000) The -loop structure of human mtDNA is destabilized directly by 1-methyl-4-phenylpyridinium ion (MPP+), a parkinsonism-causing toxin. Eur J Biochem 267: 200–206. doi: 10.1046/j.1432-1327.2000.00990.x
[27]  Oshige M, Takeuchi R, Ruike R, Kuroda K, Sakaguchi K (2004) Subunit protein-affinity isolation of Drosophila DNA polymerase catalytic subunit. Protein Expr Purif 35: 248–256. doi: 10.1016/j.pep.2004.02.001
[28]  Kusumoto R, Masutani C, Shimmyo S, Iwai S, Hanaoka F (2004) DNA binding properties of human DNA polymerase η: implications for fidelity and polymerase switching of translesion synthesis. Genes Cells 9: 1139–1150. doi: 10.1111/j.1365-2443.2004.00797.x
[29]  Biertümpfel C, Zhao Y, Kondo Y, Ramón-Maiques S, Gregory M, et al. (2010) Structure and mechanism of human DNA polymerase η. Nature 465: 1044–1048. doi: 10.1038/nature09196
[30]  Ohashi E, Murakumo Y, Kanjo N, Akagi J, Masutani C, et al. (2004) Interaction of hREV1 with three human Y-family DNA polymerases. Genes Cells 9: 523–531. doi: 10.1111/j.1356-9597.2004.00747.x
[31]  Shimazaki N, Yoshida K, Kobayashi T, Toji S, Tamai T, et al. (2002) Over-expression of human DNA polymerase λ in E. coli and characterization of the recombinant enzyme. Genes Cells 7: 639–651. doi: 10.1046/j.1365-2443.2002.00547.x
[32]  Sakaguchi K, Hotta Y, Stern H (1980) Chromatin-associated DNA polymerase activity in meiotic cells of lily and mouse. Cell Struct Funct 5: 323–334. doi: 10.1247/csf.5.323
[33]  Uchiyama Y, Kimura S, Yamamoto T, Ishibashi T, Sakaguchi K (2004) Plant DNA polymerase λ, a DNA repair enzyme that functions in plant meristematic and meiotic tissues. Eur J Biochem 271: 2799–2807. doi: 10.1111/j.1432-1033.2004.04214.x
[34]  Mizushina Y, Tanaka N, Yagi H, Kurosawa T, Onoue M, et al. (1996) Fatty acids selectively inhibit eukaryotic DNA polymerase activities in vitro. Biochim Biophys Acta 1308: 256–262. doi: 10.1016/0167-4781(96)00121-2
[35]  Mizushina Y, Yoshida S, Matsukage A, Sakaguchi K (1997) The inhibitory action of fatty acids on DNA polymerase β. Biochim Biophys Acta 1336: 509–521. doi: 10.1016/s0304-4165(97)00067-6
[36]  Ogawa A, Murate T, Suzuki M, Nimura Y, Yoshida S (1998) Lithocholic acid, a putative tumor promoter, inhibits mammalian DNA polymerase β. Jpn J Cancer Res 89: 1154–1159. doi: 10.1111/j.1349-7006.1998.tb00510.x
[37]  Tamiya-Koizumi K, Murate T, Suzuki M, Simbulan CM, Nakagawa M, et al. (1997) Inhibition of DNA primase by sphingosine and its analogues parallels with their growth suppression of cultured human leukemic cells. Biochem Mol Biol Int 41: 1179–1189. doi: 10.1080/15216549700202271
[38]  Nakayama C, Saneyoshi M (1985) Inhibitory effects of 9-β--xylofuranosyladenine 5′-triphosphate on DNA-dependent RNA polymerase I and II from cherry salmon (Oncorhynchus masou). J Biochem (Tokyo) 97: 1385–1389.
[39]  Mizushina Y, Dairaku I, Yanaka N, Takeuchi T, Ishimaru C, et al. (2007) Inhibitory action of polyunsaturated fatty acids on IMP dehydrogenase. Biochimie 89: 581–590. doi: 10.1016/j.biochi.2007.01.009
[40]  Soltis DA, Uhlenbeck OC (1982) Isolation and characterization of two mutant forms of T4 polynucleotide kinase. J Biol Chem 257: 11332–11339.
[41]  Lu BC, Sakaguchi K (1991) An endo-exonuclease from meiotic tissues of the basidiomycete Coprinus cinereus: Its purification and characterization. J Biol Chem 266: 21060–21066.
[42]  Mizushina Y, Murakami C, Ohta K, Takikawa H, Mori K, et al. (2002) Selective inhibition of the activities of both eukaryotic DNA polymerases and DNA topoisomerases by elenic acid. Biochem Pharmacol 63: 421–427. doi: 10.1016/s0006-2952(01)00891-7
[43]  Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55–63. doi: 10.1016/0022-1759(83)90303-4
[44]  Mathew R, Kruthiventi AK, Prasad JV, Kumar SP, Srinu G, et al. (2010) Inhibition of mycobacterial growth by plumbagin derivatives. Chem Biol Drug Des 76: 34–42. doi: 10.1111/j.1747-0285.2010.00987.x
[45]  Mizushina Y, Kamisuki S, Mizuno T, Takemura M, Asahara H, et al. (2000) Dehydroaltenusin, a mammalian DNA polymerase α inhibitor. J Biol Chem 275: 33957–33961. doi: 10.1074/jbc.m006096200

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133