Injection of a Soluble Fragment of Neural Agrin (NT-1654) Considerably Improves the Muscle Pathology Caused by the Disassembly of the Neuromuscular Junction
Treatment of neuromuscular diseases is still an unsolved problem. Evidence over the last years strongly indicates the involvement of malformation and dysfunction of neuromuscular junctions in the development of such medical conditions. Stabilization of NMJs thus seems to be a promising approach to attenuate the disease progression of muscle wasting diseases. An important pathway for the formation and maintenance of NMJs is the agrin/Lrp4/MuSK pathway. Here we demonstrate that the agrin biologic NT-1654 is capable of activating the agrin/Lrp4/MuSK system in vivo, leading to an almost full reversal of the sarcopenia-like phenotype in neurotrypsin-overexpressing (SARCO) mice. We also show that injection of NT-1654 accelerates muscle re-innervation after nerve crush. This report demonstrates that a systemically administered agrin fragment has the potential to counteract the symptoms of neuromuscular disorders.
References
[1]
Dupuis L, Echaniz-Laguna A (2010) Skeletal muscle in motor neuron diseases: therapeutic target and delivery route for potential treatments. Curr Drug Targets 11: 1250–1261. doi: 10.2174/1389450111007011250
[2]
Murray LM, Beauvais A, Bhanot K, Kothary R (2012) Defects in neuromuscular junction remodelling in the Smn(2B/-) mouse model of spinal muscular atrophy. Neurobiol Dis 49C: 57–67. doi: 10.1016/j.nbd.2012.08.019
[3]
Deschenes MR (2004) Effects of aging on muscle fibre type and size. Sports Med 34: 809–824. doi: 10.2165/00007256-200434120-00002
[4]
Samuel MA, Valdez G, Tapia JC, Lichtman JW, Sanes JR (2012) Agrin and synaptic laminin are required to maintain adult neuromuscular junctions. PLoS ONE 7: e46663. doi: 10.1371/journal.pone.0046663
[5]
Valdez G, Tapia JC, Kang H, Clemenson GD Jr, Gage FH, et al. (2010) Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc Natl Acad Sci U S A 107: 14863–14868. doi: 10.1073/pnas.1002220107
[6]
Burden SJ, Yumoto N, Zhang W (2013) The Role of MuSK in Synapse Formation and Neuromuscular Disease. Cold Spring Harb Perspect Biol 5. (5) a009167
[7]
Bezakova G, Ruegg MA (2003) New insights into the roles of agrin. Nat Rev Mol Cell Biol 4: 295–308. doi: 10.1038/nrm1074
[8]
Wu H, Lu Y, Shen C, Patel N, Gan L, et al. (2012) Distinct Roles of Muscle and Motoneuron LRP4 in Neuromuscular Junction Formation. Neuron 75: 94–107. doi: 10.1016/j.neuron.2012.04.033
[9]
Fertuck HC, Salpeter MM (1974) Localization of acetylcholine receptor by 125I-labeled alpha-bungarotoxin binding at mouse motor endplates. Proc Natl Acad Sci U S A 71: 1376–1378. doi: 10.1073/pnas.71.4.1376
[10]
Gesemann M, Denzer AJ, Ruegg MA (1995) Acetylcholine receptor-aggregating activity of agrin isoforms and mapping of the active site. J Cell Biol 128: 625–636. doi: 10.1083/jcb.128.4.625
[11]
Ruegg MA, Tsim KW, Horton SE, Kroger S, Escher G, et al. (1992) The agrin gene codes for a family of basal lamina proteins that differ in function and distribution. Neuron 8: 691–699. doi: 10.1016/0896-6273(92)90090-z
[12]
Burgess RW, Nguyen QT, Son YJ, Lichtman JW, Sanes JR (1999) Alternatively spliced isoforms of nerve- and muscle-derived agrin: their roles at the neuromuscular junction. Neuron 23: 33–44. doi: 10.1016/s0896-6273(00)80751-5
[13]
Gautam M, Noakes PG, Moscoso L, Rupp F, Scheller RH, et al. (1996) Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85: 525–535. doi: 10.1016/s0092-8674(00)81253-2
[14]
DeChiara TM, Bowen DC, Valenzuela DM, Simmons MV, Poueymirou WT, et al. (1996) The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85: 501–512. doi: 10.1016/s0092-8674(00)81251-9
[15]
Lin W, Burgess RW, Dominguez B, Pfaff SL, Sanes JR, et al. (2001) Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410: 1057–1064. doi: 10.1038/35074025
[16]
Okada K, Inoue A, Okada M, Murata Y, Kakuta S, et al. (2006) The muscle protein Dok-7 is essential for neuromuscular synaptogenesis. Science 312: 1802–1805. doi: 10.1126/science.1127142
[17]
Weatherbee SD, Anderson KV, Niswander LA (2006) LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction. Development 133: 4993–5000. doi: 10.1242/dev.02696
[18]
Koneczny I, Cossins J, Vincent A (2013) The role of muscle-specific tyrosine kinase (MuSK) and mystery of MuSK myasthenia gravis. J Anat. 10.1111/joa.12034 [doi].
[19]
Motomura M, Narita MT (2013) [Autoantibodies in myasthenia gravis]. Brain Nerve 65: 433–439.
[20]
Perez-Garcia MJ, Burden SJ (2012) Increasing MuSK Activity Delays Denervation and Improves Motor Function in ALS Mice. Cell Rep 2: 497–502. doi: 10.1016/j.celrep.2012.08.004
[21]
Reif R, Sales S, Hettwer S, Dreier B, Gisler C, et al. (2007) Specific cleavage of agrin by neurotrypsin, a synaptic protease linked to mental retardation. FASEB J 21: 3468–3478. doi: 10.1096/fj.07-8800com
[22]
Hettwer S, Dahinden P, Kucsera S, Farina C, Ahmed S, et al. (2013) Elevated levels of a C-terminal agrin fragment identifies a new subset of sarcopenia patients. Exp Gerontol 48: 69–75. doi: 10.1016/j.exger.2012.03.002
[23]
Butikofer L, Zurlinden A, Bolliger MF, Kunz B, Sonderegger P (2011) Destabilization of the neuromuscular junction by proteolytic cleavage of agrin results in precocious sarcopenia. FASEB J 25: 4378–4393. doi: 10.1096/fj.11-191262
[24]
Bolliger MF, Zurlinden A, Luscher D, Butikofer L, Shakhova O, et al. (2010) Specific proteolytic cleavage of agrin regulates maturation of the neuromuscular junction. J Cell Sci 123: 3944–3955. doi: 10.1242/jcs.072090
[25]
Powers SK, Wiggs MP, Duarte JA, Zergeroglu AM, Demirel HA (2012) Mitochondrial signaling contributes to disuse muscle atrophy. Am J Physiol Endocrinol Metab 303: 31–39. doi: 10.1152/ajpendo.00609.2011
[26]
Feng L, Zhao Y, Yoshida M, Chen H, Yang JF, et al. (2013) Sustained ocular hypertension induces dendritic degeneration of mouse retinal ganglion cells that depends on cell type and location. Invest Ophthalmol Vis Sci 54: 1106–1117. doi: 10.1167/iovs.12-10791
[27]
Punga AR, Maj M, Lin S, Meinen S, Ruegg MA (2011) MuSK levels differ between adult skeletal muscles and influence postsynaptic plasticity. Eur J Neurosci 33(5): 890–8. doi: 10.1111/j.1460-9568.2010.07569.x
[28]
Lin S, Maj M, Bezakova G, Magyar JP, Brenner HR, et al. (2008) Muscle-wide secretion of a miniaturized form of neural agrin rescues focal neuromuscular innervation in agrin mutant mice. Proc Natl Acad Sci U S A 105(32): 11406–11. doi: 10.1073/pnas.0801683105
[29]
Stephan A, Mateos JM, Kozlov SV, Cinelli P, Kistler AD, et al. (2008) Neurotrypsin cleaves agrin locally at the synapse. FASEB J 22: 1861–1873. doi: 10.1096/fj.07-100008
[30]
Patterson MF, Stephenson GM, Stephenson DG (2006) Denervation produces different single fiber phenotypes in fast- and slow-twitch hindlimb muscles of the rat. Am J Physiol Cell Physiol 291: 518–528. doi: 10.1152/ajpcell.00013.2006
[31]
Cenacchi G, Papa V, Fanin M, Pegoraro E, Angelini C (2011) Comparison of muscle ultrastructure in myasthenia gravis with anti-MuSK and anti-AChR antibodies. J Neurol 258: 746–752. doi: 10.1007/s00415-010-5823-x
[32]
Ko IK, Lee BK, Lee SJ, Andersson KE, Atala A, et al. (2013) The effect of in vitro formation of acetylcholine receptor (AChR) clusters in engineered muscle fibers on subsequent innervation of constructs in vivo. Biomaterials. S0142-9612(13)00045-8
[33]
Bogdanik LP, Burgess RW (2011) A valid mouse model of AGRIN-associated congenital myasthenic syndrome. Hum Mol Genet 20: 4617–4633. doi: 10.1093/hmg/ddr396
[34]
Krakora D, Macrander C, Suzuki M (2012) Neuromuscular junction protection for the potential treatment of amyotrophic lateral sclerosis. Neurol Res Int 2012: 379657. doi: 10.1155/2012/379657
[35]
Deschenes MR, Roby MA, Eason MK, Harris MB (2010) Remodeling of the neuromuscular junction precedes sarcopenia related alterations in myofibers. Exp Gerontol 45: 389–393. doi: 10.1016/j.exger.2010.03.007
[36]
Reif R, Sales S, Dreier B, Luscher D, Wolfel J, et al. (2008) Purification and enzymological characterization of murine neurotrypsin. Protein Expr Purif 61: 13–21. doi: 10.1016/j.pep.2008.06.003
[37]
Scotton P, Bleckmann D, Stebler M, Sciandra F, Brancaccio A, et al. (2006) Activation of muscle-specific receptor tyrosine kinase and binding to dystroglycan are regulated by alternative mRNA splicing of agrin. J Biol Chem 281: 36835–36845. doi: 10.1074/jbc.m607887200
[38]
Eusebio A, Oliveri F, Barzaghi P, Ruegg MA (2003) Expression of mouse agrin in normal, denervated and dystrophic muscle. Neuromuscul Disord 13: 408–415. doi: 10.1016/s0960-8966(03)00036-1
[39]
Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, et al. (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28: 41–51. doi: 10.1016/s0896-6273(00)00084-2
[40]
Tsuji S (1984) Koelle's copper thiocholine method performed with a low-pH phosphate buffer, followed by osmification of the precipitate: revival of two abandoned procedures. Histochemistry 81: 129–131. doi: 10.1007/bf00490105
[41]
Schiaffino S, Gorza L, Sartore S, Saggin L, Ausoni S, et al. (1989) Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil 10: 197–205. doi: 10.1007/bf01739810
[42]
Novikoff AB (1980) DAB cytochemistry: artifact problems in its current uses. J Histochem Cytochem 28: 1036–1038. doi: 10.1177/28.9.7410815