全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Japanese Medaka: A Non-Mammalian Vertebrate Model for Studying Sex and Age-Related Bone Metabolism In Vivo

DOI: 10.1371/journal.pone.0088165

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background In human, a reduction in estrogen has been proposed as one of the key contributing factors for postmenopausal osteoporosis. Rodents are conventional models for studying postmenopausal osteoporosis, but the major limitation is that ovariectomy is needed to mimic the estrogen decline after menopause. Interestingly, in medaka fish (Oryzias latipes), we observed a natural drop in plasma estrogen profile in females during aging and abnormal spinal curvature was apparent in old fish, which are similar to postmenopausal women. It is hypothesized that estrogen associated disorders in bone metabolism might be predicted and prevented by estrogen supplement in aging O. latipes, which could be corresponding to postmenopausal osteoporosis in women. Principal findings In O. latipes, plasma estrogen was peaked at 8 months old and significantly declined after 10, 11 and 22 months in females. Spinal bone mineral density (BMD) and micro-architecture by microCT measurement progressively decreased and deteriorated from 8 to 10, 12 and 14 months old, which was more apparent in females than the male counterparts. After 10 months old, O. latipes were supplemented with 17α-ethinylestradiol (EE2, a potent estrogen mimic) at 6 and 60 ng/mg fish weight/day for 4 weeks, both reduction in spinal BMD and deterioration in bone micro-architecture were significantly prevented. The estrogenic effect of EE2 in O. latipes was confirmed by significant up-regulation of four key estrogen responsive genes in the liver. In general, bone histomorphometric analyses indicated significantly lowered osteoblasts and osteoclasts numbers and surfaces on vertebrae of EE2-fed medaka. Significance We demonstrate osteoporosis development associated with natural drop in estrogen level during aging in female medaka, which could be attenuated by estrogen treatment. This small size fish is a unique alternative non-mammalian vertebrate model for studying estrogen-related molecular regulation in postmenopausal skeletal disorders in vivo without ovariectomy.

References

[1]  Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289: 1508–1514. doi: 10.1126/science.289.5484.1508
[2]  Kraenzlin M (2007) Biochemical markers of bone turnover and osteoporosis management. Bonekey Osteovision 4: 191–203. doi: 10.1138/20070266
[3]  Khosla S, Melton LJ, Atkinson EJ, O’Fallon WM, Klee GG, et al. (1998) Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Met 83: 2266–2274. doi: 10.1210/jcem.83.7.4924
[4]  Faienza MF, Ventura A, Marzano F, Cavallo L (2005) Postmenopausal osteoporosis: The role of immune system cells. Clinical Dev Immunol doi: 10.1155/2013/575936.
[5]  Weitzmann MN, Pacifici R (2006) Estrogen deficiency and bone loss: an inflammatory tale. J Clinical Investigat 116: 1186–1194. doi: 10.1172/jci28550
[6]  Zhao R (2012) Immune regulation of osteoclast function in postmenopausal osteoporosis: A critical interdisciplinary perspective. Inter J Medical Sci 9: 825–832. doi: 10.7150/ijms.5180
[7]  Delmas PD (2002) Treatment of postmenopausal osteoporosis. Lancet 359: 2018–2026. doi: 10.1016/s0140-6736(02)08827-x
[8]  Steger RW, Peluso JJ (1982) Effects of age on hormone levels and in vitro steroidogenesis by rat ovary and adrenal. Exp Aging Res 8: 203–208. doi: 10.1080/03610738208260367
[9]  Thompson DD, Simmons HA, Pirie CM, Ke HZ (1995) FDA guidelines and animal models for osteoporosis. Bone 17: 25S–133S. doi: 10.1016/8756-3282(95)00285-l
[10]  Khajuria DK, Razdan R, Mahapatra DR, Bhat MR (2013) Osteoprotective effect of propranolol in ovariectomized rats: a comparison with zoledronic acid and alfacalcidol. J Orthop Sci doi:10.1007/s00776-013-0433-y.
[11]  Gopalakrishnan S, Cheung NKM, Yip BWP, Au DWT (2013) Medaka fish exhibits longevity gender gap, a natural drop in estrogen and telomere shortening during aging: A unique model for studying sex dependent longevity. Front Zool 10: 78 doi:10.1186/1742-9994-10-78.
[12]  Inohaya K, Takano Y, Kudo A (2007) The teleost intervertebral region acts as a growth center of the centrum: In vivo visualization of osteoblasts and their progenitors in transgenic fish. Dev Dyn 236: 3031–3046. doi: 10.1002/dvdy.21329
[13]  Kinoshita M, Murata K, Naruse K, Tanaka M (2009) Medaka: Biology, management and experimental protocol, Chapter 6, Wiley-Blackwell publishers 165–275.
[14]  To TT, Witten E, Renn J, Bhattacharya D, Huysseune A, et al. (2012) Rankl-induced osteoclastogenesis leads to loss of mineralization in a medaka osteoporosis model. Development 139: 141–150. doi: 10.1242/dev.071035
[15]  Lerner UH (2000) Osteoclast formation and resorption. Mat Biol 19: 107–120. doi: 10.1016/s0945-053x(00)00052-4
[16]  Naruse K, Tanaka M, Takeda H, (eds) ( Medaka: A Model for Organogenesis, Human Disease, and Evolution, Medaka chapter. 6: 81–93. doi: 10.1007/978-4-431-92691-7
[17]  Inohaya K, Kudo A (2000) Temporal and spatial patterns of cbfal expression during embryonic development in the teleost, Oryzias latipes.. Dev Genes Evol 210: 570–574. doi: 10.1007/s004270000094
[18]  Wagner TU, Renn J, Riemensperger T, Volff JN, Koster RW, et al. (2003) The teleost fish medaka (Oryzias latipes) as genetic model to study gravity dependent bone homeostasis in vivo. Adv Space Res 32: 1459–1465. doi: 10.1016/s0273-1177(03)90381-4
[19]  Yasutake J, Inohaya K, Kudo A (2004) Twist functions in vertebral column formation in the medaka, Oryzias latipes. Mech Dev 121: 883–894. doi: 10.1016/j.mod.2004.03.008
[20]  Hatakeyama H, Nakamura K, Izumiyama-Shimomura N, Ishii A, Tsuchida S, et al. (2008) The teleost Oryzias latipes shows telomere shortening with age despite considerable telomerase activity throughout life. Mech Age Dev 129: 550–557. doi: 10.1016/j.mad.2008.05.006
[21]  Au DWT, Mok HO, Elmore LW, Holt SE (2009) Japanese medaka: a new vertebrate model for studying telomere and telomerase biology. Comp Biochem Physiol C: Toxicol Pharmacol 149: 161–167. doi: 10.1016/j.cbpc.2008.08.005
[22]  Ding L, Kuhne WW, Hinton DE, Song J, Dynan WS (2010) Quantifiable biomarkers of normal aging in the Japanese Medaka fish (Oryzias latipes). PLoS One 5 (10).
[23]  Thorpe KL, Cummings RI, Hutchinson TH, Scholze M, Brighty G, et al. (2003) Relative potencies and combination effects of steroidal estrogens in fish. Environ Sci Technol 37: 1142–1149. doi: 10.1021/es0201348
[24]  Ternes TA, Kreckel P, Meller J (1999) Behaviour and occurrence of estrogens in municipal sewage treatment plants-II. Aerobic batch experiments with activated sludge. Sci Total Environ 225: 91–99. doi: 10.1016/s0048-9697(98)00335-0
[25]  Kong RYC, Giesy JP, Wu RSS, Chen EXH, Chiang MWL, et al. (2008) Development of a marine fish model for studying in vivo molecular responses in ecotoxicology. Aquat Toxicol 86: 131–141. doi: 10.1016/j.aquatox.2007.10.011
[26]  Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, et al. (1987) Bone histomorphometry: Standardization of nomenclature, symbols, and units. J Bone Min Res 2: 595–610. doi: 10.1002/jbmr.5650020617
[27]  Chatani M, Takano Y, Kudo A (2011) Osteoclasts in bone modeling, as revealed by in vivo imaging, are essential for organogenesis in fish. Dev Biol 360: 96–109. doi: 10.1016/j.ydbio.2011.09.013
[28]  Zhang XW, Hecker M, Jones PD, Newsted J, Au DWT, et al. (2008) Responses of the medaka HPG axis PCR array and reproduction to prochloraz and ketoconazole. Environ Sci Technol 42: 6762–6769. doi: 10.1021/es800591t
[29]  Turner RT, Riggs BL, Spelsberg TC (1994) Skeletal effects of estrogen. End Rev 15: 275–300. doi: 10.1210/edrv-15-3-275
[30]  Prestwood KM, Kenny AM, Unson C, Kulldorff M (2000) The effect of low dose micronized 17β-estradiol on bone turnover, sex hormone levels, and side effects in older women: a randomized, double blind, placebo-controlled study. J Clinical Endocrinol Met 85: 4462–4469. doi: 10.1210/jcem.85.12.7001
[31]  Zhou S, Turgeman G, Harris SE, Leitman DC, Kmomm BS, et al. (2003) Estrogens activate bone morphogenetic protein-2 gene transcription in mouse mesenchymal stem cells. Mol Endocrinol 17: 56–66. doi: 10.1210/me.2002-0210
[32]  Padilla S, Cowden J, Hinton DE, Johnson R, Flynn K, et al.. (2009) Use of medaka in toxicity testing. Curr Protocol Toxicol doi:10.1002/0471140856.tx0110s39.
[33]  Au DWT (2004) The application of histo-cytopathological biomarkers in marine pollution monitoring: A review. Mar Poll Bull 48: 817–834. doi: 10.1016/j.marpolbul.2004.02.032
[34]  Riggs BL, Khosla S, Melton LJ (2002) Sex steroids and the construction and conservation of the adult skeleton. End Rev 23: 279–302. doi: 10.1210/edrv.23.3.0465
[35]  Turner RT, Rickard DJ, Iwaniec UT, Spelsberg TC (2008) Estrogens and Progestins in ‘Principles of Bone Biology 3rd edition’ (Bilezikian J.P, et al. eds.): Academic Press, San Diego. 855–879.
[36]  Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473: 139–146. doi: 10.1016/j.abb.2008.03.018
[37]  Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, et al. (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A 97: 1566–1571. doi: 10.1073/pnas.97.4.1566
[38]  Khosla S (2001) Minireview: The OPG/RANKL/RANK system. Endocrinol 142: 5050–5055. doi: 10.1210/en.142.12.5050
[39]  Ralston SH, Uitterlinden AG (2010) Genetics of osteoporosis. End Rev 31: 629–662. doi: 10.1210/er.2009-0044
[40]  Nakamura T, Imai Y, Matsumoto T, Sato S, Takeuchi K, et al. (2007) Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130: 811–23. doi: 10.1016/j.cell.2007.07.025
[41]  Krum SA, Miranda-Carboni GA, Hauschka PV, Carroll JS, Lane TF, et al. (2008) Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival. The EMBO J 27: 535–545. doi: 10.1038/sj.emboj.7601984
[42]  Imai Y, Kondoh S, Kouzmenko A, Kato S (2010) Minireview: Osteoprotective action of estrogens is mediated by osteoclastic estrogen receptor-alpha. Mol Endocrinol 24: 877–85. doi: 10.1210/me.2009-0238
[43]  Shevde NK, Bendixen AC, Dienger KM, Pike JW (2000) Estrogens suppress RANK ligand-induced osteoclast differentiation via a stromal cell independent mechanism involving c-Jun repression. Proc Natl Acad Sci U S A 97: 7829–7834. doi: 10.1073/pnas.130200197

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133