Podosomes are highly dynamic actin-rich adhesive structures formed predominantly by cells of the monocytic lineage, which degrade the extracellular matrix. They consist of a core of F-actin and actin-regulating proteins, surrounded by a ring of adhesion-associated proteins such as vinculin. We have characterised the structure of podosomes in macrophages, particularly the structure of the ring, using three super-resolution fluorescence microscopy techniques: stimulated emission depletion microscopy, structured illumination microscopy and localisation microscopy. Rather than being round, as previously assumed, we found the vinculin ring to be created from relatively straight strands of vinculin, resulting in a distinctly polygonal shape. The strands bind preferentially at angles between 116° and 135°. Furthermore, adjacent vinculin strands are observed nucleating at the corners of the podosomes, suggesting a mechanism for podosome growth.
References
[1]
Burgstaller G, Gimona M (2005) Podosome-mediated matrix resorption and cell motility in vascular smooth muscle cells. American Journal of Physiology-Heart and Circulatory Physiology 288: H3001–H3005. doi: 10.1152/ajpheart.01002.2004
[2]
Jurdic P, Saltel F, Chabadel A, Destaing O (2006) Podosome and sealing zone: specificity of the osteoclast model. European Journal of Cell Biology 85: 195–202. doi: 10.1016/j.ejcb.2005.09.008
[3]
Weaver AM (2006) Invadopodia: specialized cell structures for cancer invasion. Clinical and Experimental Metastasis 23: 97–105. doi: 10.1007/s10585-006-9014-1
[4]
Calle Y, Anton IM, Thrasher AJ, Jones GE (2008) WASP and WIP regulate podosomes in migrating leukocytes. Journal of Microscopy 231: 494–505. doi: 10.1111/j.1365-2818.2008.02062.x
[5]
Linder S (2007) The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends in Cell Biology 17(3): 107–117. doi: 10.1016/j.tcb.2007.01.002
[6]
Linder S, Aepfelbacher M (2003) Podosomes: adhesion hot-spots of invasive cells. Trends in Cell Biology 13: 376–385. doi: 10.1016/s0962-8924(03)00128-4
[7]
van den Dries K, Meddens MBM, de Keijzer S, Shekhar S, Subramaniam V, et al. (2013) Inter- play between myosin IIA-mediated contractility and actin network integrity orchestrates podosome composition and oscillations. Nature Communications 4: 1412. doi: 10.1038/ncomms2402
[8]
Linder S, Kopp P (2005) Podosomes at a glance. Journal of Cell Science 118: 2079–2082. doi: 10.1242/jcs.02390
[9]
del Rio A, Perez-Jimenez R (2009) Stretching single talin rod molecules activates vinculin binding. Science 323.
[10]
DePasquale JA, Izzard CS (1991) Accumulation of talin in nodes at the edge of the lamellipodium and separate incorporation into adhesion plaques at focal contacts in fibroblasts. The Journal of Cell Biology 113: 1351–9. doi: 10.1083/jcb.113.6.1351
[11]
Humphries JD, Wang P, Streuli C, Geiger B, Humphries MJ, et al. (2007) Vinculin controls focal adhesion formation by direct interactions with talin and actin. The Journal of Cell Biology 179: 1043–57. doi: 10.1083/jcb.200703036
[12]
Badowski C, Pawlak G (2008) Paxillin phosphorylation controls invadopodia/podosomes spatiotemporal organization. Molecular Biology of the Cell 19: 633–645. doi: 10.1091/mbc.e06-01-0088
[13]
Deakin NO, Turner CE (2008) Paxillin comes of age. Journal of Cell Science 121: 2435–44. doi: 10.1242/jcs.018044
[14]
Luxenburg C, Geblinger D, Klein E (2007) The architecture of the adhesive apparatus of cultured osteoclasts: from podosome formation to sealing zone assembly. PLoS One 2: e179. doi: 10.1371/journal.pone.0000179
[15]
Heintzmann R, Ficz G (2006) Breaking the resolution limit in light microscopy. Briefings in Functional Genomics & Proteomics 5: 289–301. doi: 10.1093/bfgp/ell036
[16]
Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy 198: 82–87. doi: 10.1046/j.1365-2818.2000.00710.x
[17]
Heintzmann R, Cremer C (1999) Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. In: Proceedings of SPIE. volume 3568, p. 185. URL http://link.aip.org/link/?PSISDG/3568/18?5/1.
[18]
Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proceedings of the National Academy of Sciences 97: 8206. doi: 10.1073/pnas.97.15.8206
[19]
Rust JM, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods 3: 793–796. doi: 10.1038/nmeth929
Lidke KA, Rieger B, Jovin TM, Heintzmann R (2005) Superresolution by localization of quantum dots using blinking statistics. Optics Express 13: 7052–7062. doi: 10.1364/opex.13.007052
[22]
Gustafsson MGL, Shao L, Carlton PM, Wang CJ, Golubovskaya IN, et al. (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophysical Journal 94: 4957–4970. doi: 10.1529/biophysj.107.120345
[23]
Donnert G, Keller J, Medda R, Andrei MA, Rizzoli SO, et al. (2006) Macromolecular-scale resolution in biological uorescence microscopy. Proceedings of the National Academy of Sciences 103: 11440. doi: 10.1073/pnas.0604965103
[24]
Schmidt R, Wurm CA, Jakobs S, Engelhardt J, Egner A, et al. (2008) Spherical nanosized focal spot unravels the interior of cells. Nature Methods 5: 539–544. doi: 10.1038/nmeth.1214
[25]
Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, et al. (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science (New York, NY) 313: 1642–5. doi: 10.1126/science.1127344
[26]
Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science (New York, NY) 319: 810–3. doi: 10.1126/science.1153529
[27]
Juette MF, Gould TJ, Lessard MD, Mlodzianoski MJ, Nagpure BS, et al. (2008) Three-dimensional sub 100 nm resolution fluorescence microscopy of thick samples. 5: 527–529. doi: 10.1038/nmeth.1211
Meddens MBM, Rieger B, Figdor CG, Cambi A, van den Dries K (2013) Automated podosome identification and characterization in fluorescence microscopy images. Microscopy and Microanalysis 19: 180–9. doi: 10.1017/s1431927612014018
[31]
Svitkina TM, Borisy GG (1999) Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. The Journal of cell biology 145: 1009–1026. doi: 10.1083/jcb.145.5.1009
[32]
Blanchoin L, Amann KJ, Higgs HN, Marchand JB, Kaiser DA, et al. (2000) Direct observation of dendritic actin complex and WASP/Scar proteins. Nature 171: 1007–1011. doi: 10.1038/35010008
[33]
Gawden-Bone C, Zhou Z, King E, Prescott A, Watts C, et al. (2010) Dendritic cell podosomes are protrusive and invade the extracellular matrix using metalloproteinase MMP-14. Journal of Cell Science 123: 1427. doi: 10.1242/jcs.056515
[34]
Wicker K, Mandula O, Best G, Fiolka R, Heintzmann R (2013) Phase optimisation for structured illumination microscopy. Optics express 21: 2032–2049. doi: 10.1364/oe.21.002032
[35]
Dougherty E (1992) An introduction to morphological image processing. In: Tutorial texts in optical engineering, SPIE.
[36]
Bowman AW, Azzalini A (1997) Applied smoothing techniques for data analysis. Oxford University Press.