全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Lie Symmetry Analysis and Explicit Solutions of the Time Fractional Fifth-Order KdV Equation

DOI: 10.1371/journal.pone.0088336

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, using the Lie group analysis method, we study the invariance properties of the time fractional fifth-order KdV equation. A systematic research to derive Lie point symmetries to time fractional fifth-order KdV equation is performed. In the sense of point symmetry, all of the vector fields and the symmetry reductions of the fractional fifth-order KdV equation are obtained. At last, by virtue of the sub-equation method, some exact solutions to the fractional fifth-order KdV equation are provided.

References

[1]  Olver PJ (1986) Application of Lie Group to Differential Equation. Springer, New York.
[2]  Ovsiannikov LV (1982) Group Analysis of Differential Equations. Academic Press, New York.
[3]  Lie S (1881) On integration of a class of linear partial differential equations by means of definite integrals. Arch. Math. VI (3) 328–368.
[4]  Bluman GW, Kumei S (1989) Symmetries and Differential Equations. Springer, New York.
[5]  Ibragimov NH, editor (1994) CRC Handbook of Lie Group Analysis of Differential Equations. Vols. 1–3, CRC Press, Boca Raton.
[6]  Liu HZ, Geng YX (2013) Symmetry reductions and exact solutions to the systems of carbon nanotubes conveying fluid. J Differential Equations 254: 2289–2303. doi: 10.1016/j.jde.2012.12.004
[7]  Sinkala W, Leach P, O'Hara J (2008) Invariance properties of a general-pricing equation. J Differential Equations 244: 2820–2835. doi: 10.1016/j.jde.2008.02.044
[8]  Craddock M, Lennox K (2007) Lie group symmetries as integral transforms of fundamental solutions. J Differential Equations 232: 652–674. doi: 10.1016/j.jde.2006.07.011
[9]  Craddock M, Lennox K (2012) Lie symmetry methods for multi-dimensional parabolic PDEs and diffusions. J Differential Equations 252: 56–90. doi: 10.1016/j.jde.2011.09.024
[10]  Wang GW, Liu XQ, Zhang YY (2013) Lie symmetry analysis to the time fractional generalized fifth-order KdV equation. Commun. Nonlinear Sci Numer Simulat 18: 2321–2326. doi: 10.1016/j.cnsns.2012.11.032
[11]  Liu HZ (2013) Complete group classifications and symmetry reductions of the fractional fifth-order KdV types of equations. Stud Appl Math DOI: 10.1111/sapm.12011.
[12]  Kumar S, Singh K, Gupta RK (2012) Painlevé analysis, Lie symmetries and exact solutions for (2+1)-dimensional variable coefficients Broer-Kaup equations. Commun Nonlinear Sci Numer Simulat 17: 1529–1541. doi: 10.1016/j.cnsns.2011.09.003
[13]  Vaneeva O (2012) Lie symmetries and exact solutions of variable coefficient mKdV equations: An equivalence based approach. Commun Nonlinear Sci Numer Simulat 17: 611–618. doi: 10.1016/j.cnsns.2011.06.038
[14]  Johnpillai AG, Khalique CM (2010) Group analysis of KdV equation with time dependent coefficients. Appl Math Comput 216: 3761–3771. doi: 10.1016/j.amc.2010.05.043
[15]  Naz R, Khan MD, Naeem I (2013) Conservation laws and exact solutions of a class of non linear regularized long wave equations via double reduction theory and Lie symmetries. Commun Nonlinear Sci Numer Simulat 18: 826–834. doi: 10.1016/j.cnsns.2012.09.011
[16]  Listopadovaa V, Magdab O, Pobyzhc V (2013) How to find solutions, Lie symmetries, and conservation laws of forced Korteweg-de Vries equations in optimal way. Nonlinear Analysis: Real World Applications 14: 202–205. doi: 10.1016/j.nonrwa.2012.05.013
[17]  Johnpillaia AG, Karab AH, Biswas A (2013) Symmetry reduction, exact group-invariant solutions and conservation laws of the Benjamin-Bona-Mahoney equation. Appl Math Lett 26: 376–381. doi: 10.1016/j.aml.2012.10.012
[18]  Jefferson GF (2013) On the second-order approximate symmetry classification and optimal systems of subalgebras for a forced Korteweg-de Vries equation. Commun Nonlinear Sci Numer Simul 18: 2340–2358. doi: 10.1016/j.cnsns.2012.12.022
[19]  Johnpillai A, Khalique CM (2011) Lie group classification and invariant solutions of mKdV equation with time-dependent coefficients. Commun Nonlinear Sci Numer Simul 16: 1207–1215. doi: 10.1016/j.cnsns.2010.06.025
[20]  Liu H, Li J, Liu L (2010) Lie symmetry analysis, optimal systems and exact solutions to the fifth-order KdV types of equations. J Math Anal Appl 368: 551–558. doi: 10.1016/j.jmaa.2010.03.026
[21]  Diethelm K (2010) The Analysis of Fractional Differential Equations. Springer.
[22]  Liang YJ, Chen W (2013) A survey on numerical evaluation of Lvy stable distributions and a new MATLAB toolbox. Signal Processing 93: 242–251. doi: 10.1016/j.sigpro.2012.07.035
[23]  Hu S, Chen W, Gou X (2011) Modal analysis of fractional derivative damping model of frequency-dependent viscoelastic soft matter. Advances in Vibration Engineering 10: 187–196.
[24]  El-Sayed AMA, Gaber M (2006) The Adomian decomposition method for solving partial differential equations of fractal order in finite domains. Phys Lett A 359: 175–182. doi: 10.1016/j.physleta.2006.06.024
[25]  Chen Y, An HL (2008) Numerical solutions of coupled Burgers equations with time- and space-fractional derivatives. Appl Math Comput 200: 87–95. doi: 10.1016/j.amc.2007.10.050
[26]  Gazizov RK, Kasatkin AA (2013) Construction of exact solutions for fractional order differential equations by the invariant subspace method. Computers Mathematics with Applications 66: 576–584. doi: 10.1016/j.camwa.2013.05.006
[27]  Odibat Z, Momani S (2008) A generalized differential transform method for linear partial differential equations of fractional order. Appl Math Lett 21: 194–199. doi: 10.1016/j.aml.2007.02.022
[28]  Li X, Chen W (2010) Analytical study on the fractional anomalous diffusion in a half-plane. J Phys A: Math Theor 43: (49), 11.
[29]  He JH (2000) A coupling method of a homotopy technique and a perturbation technique for non-linear problems. J Non-Linear Mech 35: 37–43. doi: 10.1016/s0020-7462(98)00085-7
[30]  Wu G, Lee EWM (2010) Fractional variational iteration method and its application. Phys Lett A 374: 2506–2509. doi: 10.1016/j.physleta.2010.04.034
[31]  Zhang S, Zhang HQ (2011) Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys Lett A 375: 1069–1073. doi: 10.1016/j.physleta.2011.01.029
[32]  Guo S, Mei LQ, Li Y, Sun YF (2012) The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics. Phys Lett A 376: 407–411. doi: 10.1016/j.physleta.2011.10.056
[33]  Lu B (2012) B?klund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations. Phys Lett A 376: 2045–2048. doi: 10.1016/j.physleta.2012.05.013
[34]  Gazizov RK, Kasatkin AA, Lukashchuk SY (2007) Continuous transformation groups of fractional differential equations, Vestnik. USATU 9: 125–135 (in Russian)..
[35]  Gazizov RK, Kasatkin AA, Lukashchuk SY (2009) Symmetry properties of fractional diffusion equations. Phys Scr T 136: 014016. doi: 10.1088/0031-8949/2009/t136/014016
[36]  Buckwar E, Luchko Y (1998) Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J Math Anal Appl 227: 81–97. doi: 10.1006/jmaa.1998.6078
[37]  Djordjevic VD, Atanackovic TM (2008) Similarity solutions to nonlinear heat conduction and Burgers/KortewegCdeVries fractional equations. J Comput. Appl Math 212: 701–714. doi: 10.1016/j.cam.2007.12.013
[38]  Sahadevan R, Bakkyaraj T (2012) Invariant analysis of time fractional generalized Burgers and Korteweg-de Vries equations. J Math Anal Appl 393: 341–347. doi: 10.1016/j.jmaa.2012.04.006
[39]  Jumarie G (2006) Modified Riemann-Liouville derivative and fractional taylor series of nondifferentiable functions further results. Comput Math Appl 51: 1367–1376. doi: 10.1016/j.camwa.2006.02.001
[40]  Jumarie G (2010) Cauchy's integral formula via the modified Riemann-Liouville derivative for analytic functions of fractional order. Appl Math Lett 23: 1444–1450. doi: 10.1016/j.aml.2010.08.001
[41]  Miller KS, Ross B (1993) An Introduction to the Fractional Calculus and Fractional Differential equations. Wiley, New York.
[42]  Podlubny I (1999) Fractional Differential Equations. Academic Press, San Diego, CA.
[43]  Oldham KB, Spanier J (1974) The Fractional Calculus. Academic Press.
[44]  Kiryakova V (1994) Generalised Fractional Calculus and Applications. in: Pitman Res. Notes in Math., vol. 301.
[45]  Jafari H, Daftardar-Gejji V (2006) Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition. Appl Math Comput 180: 488–497. doi: 10.1016/j.amc.2005.12.031
[46]  Daftardar-Gejji V, Jafari H (2007) Solving a multi-order fractional differential equation using Adomian decomposition. Appl Math Comput 189: 541–548. doi: 10.1016/j.amc.2006.11.129
[47]  Wang GW, Xu TZ (2013) Symmetry properties and explicit solutions of the nonlinear time fractional KdV equation. Boundary Value Problems. 2013: 232. doi: 10.1186/1687-2770-2013-232
[48]  Wang GW, Xu TZ (2013) Invariant analysis and exact solutions of nonlinear time fractional Sharma-Tasso-Olver equation by Lie group analysis. Nonlinear Dynamics. DOI: 10.1007/s11071–013–1150-y. In press.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133