全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

MVA Vectors Expressing Conserved Influenza Proteins Protect Mice against Lethal Challenge with H5N1, H9N2 and H7N1 Viruses

DOI: 10.1371/journal.pone.0088340

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The availability of a universal influenza vaccine able to induce broad cross-reactive immune responses against diverse influenza viruses would provide an alternative to currently available strain-specific vaccines. We evaluated the ability of vectors based on modified vaccinia virus Ankara (MVA) expressing conserved influenza proteins to protect mice against lethal challenge with multiple influenza subtypes. Methods Mice were immunized with MVA vectors expressing H5N1-derived nucleoprotein (NP), the stem region of hemagglutinin (HA), matrix proteins 1 and 2 (M1 and M2), the viral polymerase basic protein 1 (PB1), or the HA stem fused to a quadrivalent matrix protein 2 extracellular domain (M2e). Immunized mice were challenged with lethal doses of H5N1, H7N1 or H9N2 virus and monitored for disease symptoms and weight loss. To investigate the influence of previous exposure to influenza virus on protective immune responses induced by conserved influenza proteins, mice were infected with pandemic H1N1 virus (H1N1pdm09) prior to immunization and subsequently challenged with H5N1 virus. Antibody and T cell responses were assessed by ELISA and flow cytometry, respectively. Results MVA vectors expressing NP alone, or co-expressed with other conserved influenza proteins, protected mice against lethal challenge with H5N1, H7N1 or H9N2 virus. Pre-exposure to H1N1pdm09 increased protective efficacy against lethal H5N1 challenge. None of the other conserved influenza proteins provided significant levels of protection against lethal challenge. NP-expressing vectors induced high numbers of influenza-specific CD4+ and CD8+ T cells and high titer influenza-specific antibody responses. Higher influenza-specific CD4+ T cell responses and NP-specific CD8+ T cell responses were associated with increased protective efficacy. Conclusions MVA vectors expressing influenza NP protect mice against lethal challenge with H5N1, H7N1 and H9N2 viruses by a mechanism involving influenza-specific CD4+ and CD8+ T cell responses.

References

[1]  Watanabe Y, Ibrahim MS, Suzuki Y, Ikuta K (2012) The changing nature of avian influenza A virus (H5N1). Trends Microbiol 20: 11–20. doi: 10.1016/j.tim.2011.10.003
[2]  Cox NJ, Subbarao K (1999) Influenza. Lancet 354: 1277–1282. doi: 10.1016/s0140-6736(99)01241-6
[3]  Couch RB, Atmar RL, Franco LM, Quarles JM, Wells J, et al. (2013) Antibody correlates and predictors of immunity to naturally occurring influenza in humans and the importance of antibody to the neuraminidase. J Infect Dis 207: 974–981. doi: 10.1093/infdis/jis935
[4]  Reber A, Katz J (2013) Immunological assessment of influenza vaccines and immune correlates of protection. Expert Rev Vaccines 12: 519–536. doi: 10.1586/erv.13.35
[5]  Donis RO, Cox NJ (2011) Prospecting the influenza hemagglutinin to develop universal vaccines. Clin Infect Dis 52: 1010–1012. doi: 10.1093/cid/cir129
[6]  Pica N, Palese P (2013) Toward a universal influenza virus vaccine: prospects and challenges. Annu Rev Med 64: 189–202. doi: 10.1146/annurev-med-120611-145115
[7]  Subbarao K, Matsuoka Y (2013) The prospects and challenges of universal vaccines for influenza. Trends Microbiol 21: 350–358. doi: 10.1016/j.tim.2013.04.003
[8]  Dreyfus C, Laursen NS, Kwaks T, Zuijdgeest D, Khayat R, et al. (2012) Highly conserved protective epitopes on influenza B viruses. Science 337: 1343–1348. doi: 10.1126/science.1222908
[9]  Corti D, Voss J, Gamblin SJ, Codoni G, Macagno A, et al. (2011) A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333: 850–856. doi: 10.1126/science.1205669
[10]  Ekiert DC, Friesen RH, Bhabha G, Kwaks T, Jongeneelen M, et al. (2011) A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 333: 843–850. doi: 10.1126/science.1204839
[11]  Bommakanti G, Citron MP, Hepler RW, Callahan C, Heidecker GJ, et al. (2010) Design of an HA2-based Escherichia coli expressed influenza immunogen that protects mice from pathogenic challenge. Proc Natl Acad Sci U S A 107: 13701–13706. doi: 10.1073/pnas.1007465107
[12]  Sagawa H, Ohshima A, Kato I, Okuno Y, Isegawa Y (1996) The immunological activity of a deletion mutant of influenza virus haemagglutinin lacking the globular region. J Gen Virol 77 (Pt 7): 1483–1487. doi: 10.1099/0022-1317-77-7-1483
[13]  Steel J, Lowen AC, Wang TT, Yondola M, Gao Q, et al.. (2010) Influenza virus vaccine based on the conserved hemagglutinin stalk domain. MBio 1: pii: e00018–10.
[14]  Epstein SL (2003) Control of influenza virus infection by immunity to conserved viral features. Expert Rev Anti Infect Ther 1: 627–638. doi: 10.1586/14787210.1.4.627
[15]  Heiny AT, Miotto O, Srinivasan KN, Khan AM, Zhang GL, et al. (2007) Evolutionarily conserved protein sequences of influenza a viruses, avian and human, as vaccine targets. PLoS One 2: e1190. doi: 10.1371/journal.pone.0001190
[16]  Song JM, Wang BZ, Park KM, Van RN, Quan FS, et al. (2011) Influenza virus-like particles containing M2 induce broadly cross protective immunity. PLoS One 6: e14538. doi: 10.1371/journal.pone.0014538
[17]  Shim BS, Choi YK, Yun CH, Lee EG, Jeon YS, et al. (2011) Sublingual immunization with M2-based vaccine induces broad protective immunity against influenza. PLoS One 6: e27953. doi: 10.1371/journal.pone.0027953
[18]  Slepushkin VA, Katz JM, Black RA, Gamble WC, Rota PA, et al. (1995) Protection of mice against influenza A virus challenge by vaccination with baculovirus-expressed M2 protein. Vaccine 13: 1399–1402. doi: 10.1016/0264-410x(95)92777-y
[19]  Tompkins SM, Zhao ZS, Lo CY, Misplon JA, Liu T, et al. (2007) Matrix protein 2 vaccination and protection against influenza viruses, including subtype H5N1. Emerg Infect Dis 13: 426–435. doi: 10.3201/eid1303.061125
[20]  Schotsaert M, De FM, Fiers W, Saelens X (2009) Universal M2 ectodomain-based influenza A vaccines: preclinical and clinical developments. Expert Rev Vaccines 8: 499–508. doi: 10.1586/erv.09.6
[21]  Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou WM, et al. (1999) A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med 5: 1157–1163. doi: 10.1038/13484
[22]  Gomez CE, Najera JL, Krupa M, Esteban M (2008) The poxvirus vectors MVA and NYVAC as gene delivery systems for vaccination against infectious diseases and cancer. Curr Gene Ther 8: 97–120. doi: 10.2174/156652308784049363
[23]  Verheust C, Goossens M, Pauwels K, Breyer D (2012) Biosafety aspects of modified vaccinia virus Ankara (MVA)-based vectors used for gene therapy or vaccination. Vaccine 30: 2623–2632. doi: 10.1016/j.vaccine.2012.02.016
[24]  Pascutti MF, Rodriguez AM, Falivene J, Giavedoni L, Drexler I, et al. (2011) Interplay between modified vaccinia virus Ankara and dendritic cells: phenotypic and functional maturation of bystander dendritic cells. J Virol 85: 5532–5545. doi: 10.1128/jvi.02267-10
[25]  Boyd AC, Ruiz-Hernandez R, Peroval MY, Carson C, Balkissoon D, et al. (2013) Towards a universal vaccine for avian influenza: protective efficacy of modified Vaccinia virus Ankara and Adenovirus vaccines expressing conserved influenza antigens in chickens challenged with low pathogenic avian influenza virus. Vaccine 31: 670–675. doi: 10.1016/j.vaccine.2012.11.047
[26]  Brewoo JN, Powell TD, Jones JC, Gundlach NA, Young GR, et al. (2013) Cross-protective immunity against multiple influenza virus subtypes by a novel modified vaccinia Ankara (MVA) vectored vaccine in mice. Vaccine 31: 1848–1855. doi: 10.1016/j.vaccine.2013.01.038
[27]  Hessel A, Schwendinger M, Fritz D, Coulibaly S, Holzer GW, et al. (2010) A pandemic influenza H1N1 live vaccine based on modified vaccinia Ankara is highly immunogenic and protects mice in active and passive immunizations. PLoS One 5: e12217. doi: 10.1371/journal.pone.0012217
[28]  Hessel A, Schwendinger M, Holzer GW, Orlinger KK, Coulibaly S, et al. (2011) Vectors based on modified vaccinia Ankara expressing influenza H5N1 hemagglutinin induce substantial cross-clade protective immunity. PLoS One 6: e16247. doi: 10.1371/journal.pone.0016247
[29]  Kreijtz JH, Suezer Y, van AG, de MG, Schnierle BS, et al. (2007) Recombinant modified vaccinia virus Ankara-based vaccine induces protective immunity in mice against infection with influenza virus H5N1. J Infect Dis 195: 1598–1606. doi: 10.1086/517614
[30]  Kreijtz JH, Suezer Y, de MG, van den Brand JM, van AG, et al. (2009) Preclinical evaluation of a modified vaccinia virus Ankara (MVA)-based vaccine against influenza A/H5N1 viruses. Vaccine 27: 6296–6299. doi: 10.1016/j.vaccine.2009.03.020
[31]  Kreijtz JH, Suezer Y, de MG, van den Brand JM, van AG, et al. (2009) Recombinant modified vaccinia virus Ankara expressing the hemagglutinin gene confers protection against homologous and heterologous H5N1 influenza virus infections in macaques. J Infect Dis 199: 405–413. doi: 10.1086/595984
[32]  Kreijtz JH, Suzer Y, Bodewes R, Schwantes A, van AG, et al. (2010) Evaluation of a modified vaccinia virus Ankara (MVA)-based candidate pandemic influenza A/H1N1 vaccine in the ferret model. J Gen Virol 91: 2745–2752. doi: 10.1099/vir.0.024885-0
[33]  Rimmelzwaan GF, Sutter G (2009) Candidate influenza vaccines based on recombinant modified vaccinia virus Ankara. Expert Rev Vaccines 8: 447–454. doi: 10.1586/erv.09.4
[34]  Sutter G, Wyatt LS, Foley PL, Bennink JR, Moss B (1994) A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus. Vaccine 12: 1032–1040. doi: 10.1016/0264-410x(94)90341-7
[35]  Berthoud TK, Hamill M, Lillie PJ, Hwenda L, Collins KA, et al. (2011) Potent CD8+ T-cell immunogenicity in humans of a novel heterosubtypic influenza A vaccine, MVA-NP+M1. Clin Infect Dis 52: 1–7. doi: 10.1093/cid/ciq015
[36]  Lillie PJ, Berthoud TK, Powell TJ, Lambe T, Mullarkey C, et al. (2012) Preliminary assessment of the efficacy of a T-cell-based influenza vaccine, MVA-NP+M1, in humans. Clin Infect Dis 55: 19–25. doi: 10.1093/cid/cis327
[37]  Chang H, Huang C, Wu J, Fang F, Zhang W, et al. (2010) A single dose of DNA vaccine based on conserved H5N1 subtype proteins provides protection against lethal H5N1 challenge in mice pre-exposed to H1N1 influenza virus. Virol J 7: 197. doi: 10.1186/1743-422x-7-197
[38]  Epstein SL, Kong WP, Misplon JA, Lo CY, Tumpey TM, et al. (2005) Protection against multiple influenza A subtypes by vaccination with highly conserved nucleoprotein. Vaccine 23: 5404–5410. doi: 10.1016/j.vaccine.2005.04.047
[39]  Amato RJ, Hawkins RE, Kaufman HL, Thompson JA, Tomczak P, et al. (2010) Vaccination of metastatic renal cancer patients with MVA-5T4: a randomized, double-blind, placebo-controlled phase III study. Clin Cancer Res 16: 5539–5547. doi: 10.1158/1078-0432.ccr-10-2082
[40]  Wodal W, Falkner FG, Kerschbaum A, Gaiswinkler C, Fritz R, et al. (2012) A cell culture-derived whole-virus H9N2 vaccine induces high titer antibodies against hemagglutinin and neuraminidase and protects mice from severe lung pathology and weight loss after challenge with a highly virulent H9N2 isolate. Vaccine 30: 4625–4631. doi: 10.1016/j.vaccine.2012.04.102
[41]  Wyatt LS, Shors ST, Murphy BR, Moss B (1996) Development of a replication-deficient recombinant vaccinia virus vaccine effective against parainfluenza virus 3 infection in an animal model. Vaccine 14: 1451–1458. doi: 10.1016/s0264-410x(96)00072-2
[42]  Ricci PS, Schafer B, Kreil TR, Falkner FG, Holzer GW (2011) Selection of recombinant MVA by rescue of the essential D4R gene. Virol J 8: 529. doi: 10.1186/1743-422x-8-529
[43]  Mayrhofer J, Coulibaly S, Hessel A, Holzer GW, Schwendinger M, et al. (2009) Nonreplicating vaccinia virus vectors expressing the H5 influenza virus hemagglutinin produced in modified Vero cells induce robust protection. J Virol 83: 5192–5203. doi: 10.1128/jvi.02081-08
[44]  Schafer B, Holzer GW, Joachimsthaler A, Coulibaly S, Schwendinger M, et al. (2011) Pre-clinical efficacy and safety of experimental vaccines based on non-replicating vaccinia vectors against yellow fever. PLoS One 6: e24505. doi: 10.1371/journal.pone.0024505
[45]  Scheiflinger F, Dorner F, Falkner FG (1998) Transient marker stabilisation: a general procedure to construct marker-free recombinant vaccinia virus. Arch Virol 143: 467–474. doi: 10.1007/s007050050303
[46]  Joklik WK (1962) The purification of four strains of poxvirus. Virology 18: 9–18. doi: 10.1016/0042-6822(62)90172-1
[47]  Kistner O, Howard MK, Spruth M, Wodal W, Bruhl P, et al. (2007) Cell culture (Vero) derived whole virus (H5N1) vaccine based on wild-type virus strain induces cross-protective immune responses. Vaccine 25: 6028–6036. doi: 10.1016/j.vaccine.2007.05.013
[48]  Kundi M (1999) One-hit models for virus inactivation studies. Antiviral Res 41: 145–152. doi: 10.1016/s0166-3542(99)00008-x
[49]  Endo A, Itamura S, Iinuma H, Funahashi S, Shida H, et al. (1991) Homotypic and heterotypic protection against influenza virus infection in mice by recombinant vaccinia virus expressing the haemagglutinin or nucleoprotein of influenza virus. J Gen Virol 72 (Pt 3): 699–703. doi: 10.1099/0022-1317-72-3-699
[50]  Hashem A, Jaentschke B, Gravel C, Tocchi M, Doyle T, et al. (2012) Subcutaneous immunization with recombinant adenovirus expressing influenza A nucleoprotein protects mice against lethal viral challenge. Hum Vaccin Immunother 8: 425–430. doi: 10.4161/hv.19109
[51]  Ulmer JB, Donnelly JJ, Parker SE, Rhodes GH, Felgner PL, et al. (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259: 1745–1749. doi: 10.1126/science.8456302
[52]  Ulmer JB, Fu TM, Deck RR, Friedman A, Guan L, et al. (1998) Protective CD4+ and CD8+ T cells against influenza virus induced by vaccination with nucleoprotein DNA. J Virol 72: 5648–5653.
[53]  Lambe T, Carey JB, Li Y, Spencer AJ, van LA, et al. (2013) Immunity against heterosubtypic influenza virus induced by adenovirus and MVA expressing nucleoprotein and matrix protein-1. Sci Rep 3: 1443. doi: 10.1038/srep01443
[54]  Price GE, Soboleski MR, Lo CY, Misplon JA, Pappas C, et al. (2009) Vaccination focusing immunity on conserved antigens protects mice and ferrets against virulent H1N1 and H5N1 influenza A viruses. Vaccine 27: 6512–6521. doi: 10.1016/j.vaccine.2009.08.053
[55]  Price GE, Soboleski MR, Lo CY, Misplon JA, Quirion MR, et al. (2010) Single-dose mucosal immunization with a candidate universal influenza vaccine provides rapid protection from virulent H5N1, H3N2 and H1N1 viruses. PLoS One 5: e13162. doi: 10.1371/journal.pone.0013162
[56]  Vitelli A, Quirion MR, Lo CY, Misplon JA, Grabowska AK, et al. (2013) Vaccination to conserved influenza antigens in mice using a novel Simian adenovirus vector, PanAd3, derived from the bonobo Pan paniscus. PLoS One 8: e55435. doi: 10.1371/journal.pone.0055435
[57]  Wang W, Huang B, Jiang T, Wang X, Qi X, et al. (2012) Robust immunity and heterologous protection against influenza in mice elicited by a novel recombinant NP-M2e fusion protein expressed in E. coli. PLoS One 7: e52488. doi: 10.1371/journal.pone.0052488
[58]  Zhou D, Wu TL, Lasaro MO, Latimer BP, Parzych EM, et al. (2010) A universal influenza A vaccine based on adenovirus expressing matrix-2 ectodomain and nucleoprotein protects mice from lethal challenge. Mol Ther 18: 2182–2189. doi: 10.1038/mt.2010.202
[59]  Wilkinson TM, Li CK, Chui CS, Huang AK, Perkins M, et al. (2012) Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat Med 18: 274–280. doi: 10.1038/nm.2612
[60]  Marshall NB, Swain SL (2011) Cytotoxic CD4 T cells in antiviral immunity. J Biomed Biotechnol 2011: 954602. doi: 10.1155/2011/954602
[61]  McKinstry KK, Strutt TM, Swain SL (2011) Hallmarks of CD4 T cell immunity against influenza. J Intern Med 269: 507–518. doi: 10.1111/j.1365-2796.2011.02367.x
[62]  McKinstry KK, Strutt TM, Kuang Y, Brown DM, Sell S, et al. (2012) Memory CD4+ T cells protect against influenza through multiple synergizing mechanisms. J Clin Invest 122: 2847–2856. doi: 10.1172/jci63689
[63]  Dienz O, Eaton SM, Bond JP, Neveu W, Moquin D, et al. (2009) The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J Exp Med 206: 69–78. doi: 10.1084/jem.20081571
[64]  Sridhar S, Begom S, Bermingham A, Hoschler K, Adamson W, et al. (2013) Cellular immune correlates of protection against symptomatic pandemic influenza. Nat Med 19: 1305–1312. doi: 10.1038/nm.3350
[65]  Bui HH, Peters B, Assarsson E, Mbawuike I, Sette A (2007) Ab and T cell epitopes of influenza A virus, knowledge and opportunities. Proc Natl Acad Sci U S A 104: 246–251. doi: 10.1073/pnas.0609330104
[66]  LaMere MW, Lam HT, Moquin A, Haynes L, Lund FE, et al. (2011) Contributions of antinucleoprotein IgG to heterosubtypic immunity against influenza virus. J Immunol 186: 4331–4339. doi: 10.4049/jimmunol.1003057
[67]  Jakeman KJ, Smith H, Sweet C (1989) Mechanism of immunity to influenza: maternal and passive neonatal protection following immunization of adult ferrets with a live vaccinia-influenza virus haemagglutinin recombinant but not with recombinants containing other influenza virus proteins. J Gen Virol 70 (Pt 6): 1523–1531. doi: 10.1099/0022-1317-70-6-1523
[68]  Kheiri MT, Jamali A, Shenagari M, Hashemi H, Sabahi F, et al. (2012) Influenza virosome/DNA vaccine complex as a new formulation to induce intra-subtypic protection against influenza virus challenge. Antiviral Research 95: 229–236. doi: 10.1016/j.antiviral.2012.07.003
[69]  Fiers W, De FM, El BK, Schepens B, Roose K, et al. (2009) M2e-based universal influenza A vaccine. Vaccine 27: 6280–6283. doi: 10.1016/j.vaccine.2009.07.007
[70]  Kosik I, Krejnusova I, Praznovska M, Polakova K, Russ G (2012) A DNA vaccine expressing PB1 protein of influenza A virus protects mice against virus infection. Arch Virol 157: 811–817. doi: 10.1007/s00705-012-1238-6
[71]  Zhao G, Sun S, Du L, Xiao W, Ru Z, et al. (2010) An H5N1 M2e-based multiple antigenic peptide vaccine confers heterosubtypic protection from lethal infection with pandemic 2009 H1N1 virus. Virol J 7: 151. doi: 10.1186/1743-422x-7-151
[72]  Zhao G, Lin Y, Du L, Guan J, Sun S, et al. (2010) An M2e-based multiple antigenic peptide vaccine protects mice from lethal challenge with divergent H5N1 influenza viruses. Virol J 7: 9. doi: 10.1186/1743-422x-7-9
[73]  Mullarkey CE, Boyd A, van LA, Lefevre EA, Carr BV, et al. (2013) Improved adjuvanting of seasonal influenza vaccines: Pre-clinical studies of MVA-NP+M1 co-administration with inactivated influenza vaccine. Eur J Immunol 43: 1940–1952. doi: 10.1002/eji.201242922
[74]  Gao R, Cao B, Hu Y, Feng Z, Wang D, et al. (2013) Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 368: 1888–1897. doi: 10.1056/nejmoa1304459
[75]  Liu D, Shi W, Shi Y, Wang D, Xiao H, et al. (2013) Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet 381: 1926–1932. doi: 10.1016/s0140-6736(13)60938-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133