全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Abundant Expression of Guidance and Synaptogenic Molecules in the Injured Spinal Cord

DOI: 10.1371/journal.pone.0088449

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Spinal interneurons have emerged as crucial targets of supraspinal input during post-injury axonal remodelling. For example, lesioned corticospinal projections use propriospinal neurons as relay stations to form intraspinal detour circuits that circumvent the lesion site and contribute to functional recovery. While a number of the molecules that determine the formation of neuronal circuits in the developing nervous system have been identified, it is much less understood which of these cues are also expressed in the injured spinal cord and can thus guide growing collaterals and initiate synaptogenesis during circuit remodelling. Methodology/Principal Findings To address this question we characterized the expression profile of a number of guidance and synaptogenic molecules in the cervical spinal cord of healthy and spinal cord-injured mice by in situ hybridization. To assign the expression of these molecules to distinct populations of interneurons we labeled short and long propriospinal neurons by retrograde tracing and glycinergic neurons using a transgenically expressed fluorescent protein. Interestingly, we found that most of the molecules studied including members of slit-, semaphorin-, synCAM-, neuroligin- and ephrin- families as well as their receptors are also present in the adult CNS. While many of these molecules were abundantly expressed in all interneurons examined, some molecules including slits, semaphorin 7a, synCAM4 and neuroligin 1 showed preferential expression in propriospinal interneurons. Overall the expression pattern of guidance and synaptogenic molecules in the cervical spinal cord appeared to be stable over time and was not substantially altered following a midthoracic spinal cord injury. Conclusions Taken together, our study indicates that many of the guidance and synaptogenic cues that regulate neuronal circuit formation in development are also present in the adult CNS and therefore likely contribute to the remodelling of axonal connections in the injured spinal cord.

References

[1]  Kolodkin AL, Tessier-Lavigne M (2011) Mechanisms and molecules of neuronal wiring: a primer. Cold Spring Harb Perspect Biol 3(6).
[2]  Fox MA, Umemori H (2006) Seeking long-term relationship: axon and target communicate to organize synaptic differentiation. J Neurochem 97(5): 1215–1231. doi: 10.1111/j.1471-4159.2006.03834.x
[3]  Kennedy TE, Wang H, Marshall W, Tessier-Lavigne M (2006) Axon guidance by diffusible chemoattractants: a gradient of netrin protein in the developing spinal cord. J Neurosci 26(34): 8866–8874. doi: 10.1523/jneurosci.5191-05.2006
[4]  Behar O, Golden JA, Mashimo H, Schoen FJ, Fishman MC (1996) Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature 383(6600): 525–528. doi: 10.1038/383525a0
[5]  López-Bendito G, Flames N, Ma L, Fouquet C, Di Meglio T, et al. (2007) Robo1 and Robo2 cooperate to control the guidance of major axonal tracts in the mammalian forebrain. J Neurosci 27(13): 3395–3407. doi: 10.1523/jneurosci.4605-06.2007
[6]  Eberhart J, Swartz M, Koblar SA, Pasquale EB, Tanaka H, et al. (2000) Expression of EphA4, ephrin-A2 and ephrin-A5 during axon outgrowth to the hindlimb indicates potential roles in pathfinding. Dev Neurosci 22(3): 237–250. doi: 10.1159/000017446
[7]  Biederer T, Sara Y, Mozhayeva M, Atasoy D, Liu X, et al. (2002) SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297(5586): 1525–1531. doi: 10.1126/science.1072356
[8]  Scheiffele P, Fan J, Choih J, Fetter R, Serafini T (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 9 101(6): 657–669. doi: 10.1016/s0092-8674(00)80877-6
[9]  Graf ER, Zhang X, Jin SX, Linhoff MW, Craig AM (2004) Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119(7): 1013–1026. doi: 10.1016/j.cell.2004.11.035
[10]  Henkemeyer M, Itkis OS, Ngo M, Hickmott PW, Ethell IM (2003) Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J Cell Biol 163(6): 1313–1326. doi: 10.1083/jcb.200306033
[11]  Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, et al. (2004) The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 7(3): 269–277. doi: 10.1038/nn1195
[12]  Courtine G, Song B, Roy RR, Zhong H, Herrmann JE, et al. (2008) Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med 14(1): 69–74. doi: 10.1038/nm1682
[13]  Lang C, Guo X, Kerschensteiner M, Bareyre FM (2012) Single collateral reconstructions reveal distinct phases of corticospinal remodelling following spinal cord injury. PLoS ONE 7(1): e30461. doi: 10.1371/journal.pone.0030461
[14]  Weidner N, Ner A, Salimi N, Tuszynski MH (2001) Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proc Natl Acad Sci U S A 98(6): 3513–3518. doi: 10.1073/pnas.051626798
[15]  Alstermark B, Gorska T, Lundberg A, Pettersson LG (1990) Integration in descending motor pathways controlling the forelimb in the cat. 16. Visually guided switching of target-reaching. Exp Brain Res 80(1): 1–11. doi: 10.1007/bf00228841
[16]  Alstermark B, Lundberg A, Pinter M, Sasaki S (1987) Subpopulations and functions of long C3-C5 propriospinal neurones. Brain Res 404(1–2): 395–400. doi: 10.1016/0006-8993(87)91402-8
[17]  Kerschensteiner M, Bareyre FM, Buddeberg BS, Merkler D, Stadelmann C, et al. (2004) Remodelling of axonal connections contributes to recovery in an animal model of multiple sclerosis. J Exp Med 200(8): 1027–1038. doi: 10.1084/jem.20040452
[18]  Muramatsu R, Takahashi C, Miyake S, Fujimura H, Mochizuki H, et al. (2012) Angiogenesis induced by CNS inflammation promotes neuronal remodelling through vessel-derived prostacyclin. Nat Med 18(11): 1658–1664. doi: 10.1038/nm.2943
[19]  Dominici N, Keller U, Vallery H, Friedli L, van den Brand R, et al. (2012) Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders. Nat Med 18(7): 1142–1147. doi: 10.1038/nm.2845
[20]  van den Brand R, Heutschi J, Barraud Q, DiGiovanna J, Bartholdi K, et al. (2012) Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336(6085): 1182–1185. doi: 10.1126/science.1217416
[21]  Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, et al. (2005) Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 482(2): 123–141. doi: 10.1002/cne.20349
[22]  Brose K, Bland KS, Wang KH, Arnott D, Henzel W, et al. (1999) Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96(6): 795–806. doi: 10.1016/s0092-8674(00)80590-5
[23]  Kidd T, Brose K, Mitchell KJ, Fetter RD, Tessier-Lavigne M, et al.. (1998) Roundabout controls axon-crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 92, 205–215.
[24]  Wehrle R, Camand E, Chedotal A, Sotelo C, Dusart I (2005) Expression of netrin-1, slit-1 and slit-3 but not of slit-2 after cerebellar and spinal cord lesions. Eur J Neurosci 22(9): 2134–2144. doi: 10.1111/j.1460-9568.2005.04419.x
[25]  Mauti O, Domanitskaya E, Andermatt I, Sadhu R, Stoeckli ET (2007) Semaphorin6A acts as a gate keeper between the central and peripheral nervous system. Neural Dev 2: 28. doi: 10.1186/1749-8104-2-28
[26]  Kerjan G, Dolan J, Haumaitre C, Schneider-Maunoury S, Fujisawa H, et al. (2005) The transmembrane semaphorin Sema6A controls cerebellar granule cell migration. Nat Neurosci 8: 1516–1524. doi: 10.1038/nn1555
[27]  Suto F, Tsubio M, Kamiya H, Mizuno H, Kiyama Y, et al. (2007) Interactions between Plexin-A2, Plexin-A4, and Semaphorin6A controls lamina-restricted projection of hippocampal mossy fibers. Neuron 53: 535–547. doi: 10.1016/j.neuron.2007.01.028
[28]  Rünker AE, Little GE, Suto F, Fujisawa H, Mitchell KJ (2008) Semaphorin-6A controls guidance of corticospinal tract axons at multiple choice points. Neural Dev 3: 34. doi: 10.1186/1749-8104-3-34
[29]  Pasterkamp RJ, Peschon JJ, Spriggs MK, Kolodkin AL (2003) Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature 424(6947): 398–405. doi: 10.1038/nature01790
[30]  Varoqueaux F, Aramuni G, Rawson RL, Mohrmann R, Missler M, et al. (2006) Neuroligins determine synapse maturation and function. Neuron 51: 741–754. doi: 10.1016/j.neuron.2006.09.003
[31]  Ullrich B, Ushkaryov YA, Südhof TC (1995) Cartography of neurexins: more than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. Neuron 14(3): 497–507. doi: 10.1016/0896-6273(95)90306-2
[32]  Klein R (2004) Eph/ephrin signaling in morphogenesis, neural development and plasticity. Curr Opin Cell Biol 16(5): 580–9. doi: 10.1016/j.ceb.2004.07.002
[33]  Aoto J, Ting P, Maghsoodi B, Xu N, Henkemeyer M, et al. (2007) Postsynaptic ephrinB3 promotes shaft glutamatergic synapse formation. J Neurosci 27(28): 7508–7519. doi: 10.1523/jneurosci.0705-07.2007
[34]  Klein R (2001) Excitatory Eph receptors and adhesive ephrin ligands. Curr Opin Cell Biol 13(2): 196–203. doi: 10.1016/s0955-0674(00)00197-6
[35]  Yokoyama N, Romero MI, Cowan CA, Galvan P, Helmbacher F, et al. (2001) Forward signaling mediated by ephrin-B3 prevents contralateral corticospinal axons from recrossing the spinal cord midline. Neuron 29: 85–97. doi: 10.1016/s0896-6273(01)00182-9
[36]  Nakagawa S, Brennan C, Johnson KG, Shewan D, Harris WA, et al. (2000) Ephrin-B regulates the ipsilateral routing of retinal axons at the optic chiasm. Neuron 25: 599–610. doi: 10.1016/s0896-6273(00)81063-6
[37]  Williams SE, Mann F, Erskine L, Sakurai T, Wei S, et al.. (2003) Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm. Neuron 39, 919–935.
[38]  Aimone JB, Leasure JL, Perreau VM, Thallmair M (2004) Christopher Reeve Paralysis Foundation Research Consortium (2004) Spatial and temporal gene expression profiling of the contused rat spinal cord. Exp Neurol 189(2): 204–221. doi: 10.1016/j.expneurol.2004.05.042
[39]  Chamankhah M, Eftekharpour E, Karimi-Abdolrezaee S, Boutros PC, San-Marina S, et al. (2013) Genome-wide gene expression profiling of stress response in a spinal cord clip compression injury model. BMC Genomics 28 14(1): 583. doi: 10.1186/1471-2164-14-583
[40]  Di-Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, et al. (2003) Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Ann Neurol 53(4): 454–468. doi: 10.1002/ana.10472
[41]  De-Biase A, Knoblach SM, Di-Giovanni S, Fan C, Molon A, et al. (2005) Gene expression profiling of experimental traumatic spinal cord injury as a function of distance from impact site and injury severity. Physiol Genomics 22(3): 368–381. doi: 10.1152/physiolgenomics.00081.2005
[42]  Bareyre FM, Haudenschild B, Schwab ME (2002) Long-lasting sprouting and gene expression changes induced by the monoclonal antibody IN-1 in the adult spinal cord. J Neurosci 22(16): 7097–7110.
[43]  Xu X, Ng S, Wu ZL, Nguyen D, Homburger S, et al. (1998) Human semaphorin K1 is glycosylphosphatidylinositol-linked and defines a new subfamily of viral-related semaphorins. J Biol Chem 273: 22428–22434. doi: 10.1074/jbc.273.35.22428
[44]  Pasquale EB (1997) The Eph family of receptors. Curr Opin Cell Biol 9(5): 608–15. doi: 10.1016/s0955-0674(97)80113-5
[45]  Flanagan JG, Vanderhaeghen P (1998) The ephrins and Eph receptors in neural development. Annu Rev Neurosci 21: 309–345. doi: 10.1146/annurev.neuro.21.1.309
[46]  Ichtchenko K, Hata Y, Nguyen T, Ullrich B, Missler M, et al.. (1995) Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell 81: 435– 443.
[47]  Boucard AA, Chubykin AA, Comoletti D, Taylor P, Sudhof TC (2005) A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins. Neuron 48: 229 –236.
[48]  Wright DE, White FA, Gerfen RW, Silos-Santiago I, Snider WD (1995) The guidance molecule semaphorin 3 is expressed in regions of spinal cord and periphery avoided by growing sensory axons. J Comp Neurol 361(2): 321–333. doi: 10.1002/cne.903610209
[49]  Hammond R, Vivancos V, NaeemA, Chilton J, Mambetisaeva E, et al. (2005) Slit-mediated repulsion is a key regulator of motor axon pathfinding in the hindbrain. Dev 132(20): 4483–4495. doi: 10.1242/dev.02038
[50]  Philipp M, Niederkopfler V, Debrunner M, Alther T, Kunz B, et al. (2012) RabGDI controls axonal midline crossing by regulating Robo1 surface expression. Neural Dev 7: 36. doi: 10.1186/1749-8104-7-36
[51]  Jevince AR, Kadison SR, Pittman AJ, Chien CB, Kaprielian Z (2006) Distribution of EphB receptors and ephrin-B1 in the developing vertebrate spinal cord. J Comp Neurol 497(5): 734–750. doi: 10.1002/cne.21001
[52]  Kadison SR, Murakami F, Matise MP, Kaprielian Z (2006) The role of floor plate contact in the elaboration of contralateral commissural projections within the embryonic mouse spinal cord. Dev Biol 296(2): 499–513. doi: 10.1016/j.ydbio.2006.06.022
[53]  Bagri A, Marín O, Plump AS, Mak J, Pleasure SJ, et al. (2002) Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron 33(2): 233–248. doi: 10.1016/s0896-6273(02)00561-5
[54]  Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274: 1123–1133. doi: 10.1126/science.274.5290.1123
[55]  Mueller BK (1999) Growth cone guidance: first steps towards a deeper understanding. Annu Rev Neurosci 22: 351–358. doi: 10.1146/annurev.neuro.22.1.351
[56]  Lu YJ, Xu NW, Yang WQ (2008) Immunofluorescence laser confocal expression and localization study of rat nerve growth guidance cues Netrin-1 and Slit2 after spinal cord injury. Chin J Traumatol 11(2): 98–103. doi: 10.1016/s1008-1275(08)60021-8
[57]  Marillat V, Cases O, Nguyen-Ba-Charvet KT, Tessier-Lavigne M, Sotelo C, et al. (2002) Spatiotemporal expression patterns of slit and robo genes in the rat brain. J Comp Neurol 442(2): 130–155. doi: 10.1002/cne.10068
[58]  Sang Q, Wu JY, Rao Y, Hsueh Y-P, Tan S-S (2002) Slit promotes branching and elongation of neurites of interneurons but not projection neurons from the developing telencephalon. Mol Cell Neurosci 21: 250–265. doi: 10.1006/mcne.2002.1156
[59]  Whitford KL, Marillat V, Stein E, Goodman CS, Tessier-Lavigne M, et al. (2002) Regulation of cortical dendrite development by slit–robo interactions. Neuron 33: 47–61. doi: 10.1016/s0896-6273(01)00566-9
[60]  Kolodkin AL, Matthes D, Goodman CS (1993) The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell 75(7): 1389–1399. doi: 10.1016/0092-8674(93)90625-z
[61]  Muller B K, Bonhoeffer F, Drescher U (1996) Novel gene families involved in neural pathfinding. Curr Opin Genet Dev 6: 469–474. doi: 10.1016/s0959-437x(96)80069-4
[62]  Mann F, Chauvet S, Rougon G (2007) Semaphorins in development and adult brain: Implication for neurological diseases. Prog Neurobiol 82: 57–79. doi: 10.1016/j.pneurobio.2007.02.011
[63]  Pasterkamp RJ, Kolk SM, Hellemons AJ, Kolodkin AL (2007) Expression patterns of semaphorin7A and plexinC1 during rat neural development suggest roles in axon guidance and neuronal migration. BMC Dev Biol 7: 98. doi: 10.1186/1471-213x-7-98
[64]  Shim SO, Cafferty WB, Schmidt EC, Kim BG, Fujisawa H, et al. (2012) PlexinA2 limits recovery from corticospinal axotomy by mediating oligodendrocyte-derived Sema6A growth inhibition. Mol Cell Neurosci 50(2): 193–200. doi: 10.1016/j.mcn.2012.04.007
[65]  Kopp MA, Brommer B, Gatzemeier N, Schwab JM, Prüss H (2010) Spinal cord injury induces differential expression of the profibrotic semaphorin 7A in the developing and mature glial scar. Glia 58(14): 1748–1756. doi: 10.1002/glia.21045
[66]  Biederer T (2006) Hooking up new synapses. Nat Neurosci 9(10): 1203–1204. doi: 10.1038/nn1006-1203
[67]  Thomas LA, Akins MR, Biederer T (2008) Expression and adhesion profiles of SynCAM molecules indicate distinct neuronal functions. J Comp Neurol 510(1): 47–67. doi: 10.1002/cne.21773
[68]  Zelano J, Berg A, Thams S, Hailer NP, Cullheim S (2009) SynCAM1 expression correlates with restoration of central synapses on spinal motoneurons after two different models of peripheral nerve injury. J Comp Neurol 517(5): 670–682. doi: 10.1002/cne.22186
[69]  Ushkaryov YA, Petrenko AG, Geppert M, Südhof TC (1992) Neurexins: synaptic cell surface proteins related to the alpha- latrotoxin receptor and laminin. Science 257: 50 –56.
[70]  Ushkaryov YA, Südhof TC (1993) Neurexin III alpha: extensive alternative splicing generates membrane-bound and soluble forms. Proc Natl Acad Sci USA 90: 6410–6414. doi: 10.1073/pnas.90.14.6410
[71]  Scheiffele P, Fan J, Choih J, Fetter R, Serafini T (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101: 657– 669.
[72]  Dean C, Scholl FG, Choih J, DeMaria S, Berger J, et al.. (2003) Neurexin mediates the assembly of presynaptic terminals. Nat Neurosci 6: 708 –716.
[73]  Zelano J, Wallquist W, Hailer NP, Cullheim S (2007) Down-regulation of mRNAs for synaptic adhesion molecules Neuroligin-2 and -3 and SynCAM1 in spinal motoneurons after axotomy. J Comp Neurol 503: 308–318. doi: 10.1002/cne.21382
[74]  Song JY, Ichtchenko K, Suedhof TC, Brose N (1999) Neuroligin 1 is a postsynaptic call-adhesion molecule of excitatory synapses. Proc Natl Acad Sci USA 96: 1100–1105. doi: 10.1073/pnas.96.3.1100
[75]  Bundesen LQ, Scheel TA, Bregman BS, Kromer LF (2003) Ephrin-B2 and EphB2 regulation of astrocyte-meningeal fibroblast interactions in response to spinal cord lesions in adult rats. J Neurosci 23(21): 7789–800.
[76]  Moreno-Flores MT, Wandosell F (1999) Up-regulation of Eph tyrosine kinase receptors after excitotoxic injury in adult hippocampus. Neurosci 91(1): 193–201. doi: 10.1016/s0306-4522(98)00568-5
[77]  Wang Y, Ying GX, Liu X, Wang WY, Dong JH, et al. (2005) Induction of ephrin-B1 and EphB receptors during denervation-induced plasticity in the adult mouse hippocampus. Eur J Neurosci 21(9): 2336–46. doi: 10.1111/j.1460-9568.2005.04093.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133