Apart from the first family member, uncoupling protein 1 (UCP1), the functions of other UCPs (UCP2-UCP5) are still unknown. In analyzing our own results and those previously published by others, we have assumed that UCP's cellular expression pattern coincides with a specific cell metabolism and changes if the latter is altered. To verify this hypothesis, we analyzed the expression of UCP1-5 in mouse embryonic stem cells before and after their differentiation to neurons. We have shown that only UCP2 is present in undifferentiated stem cells and it disappears simultaneously with the initiation of neuronal differentiation. In contrast, UCP4 is simultaneously up-regulated together with typical neuronal marker proteins TUJ-1 and NeuN during mESC differentiation in vitro as well as during murine brain development in vivo. Notably, several tested cell lines express UCP2, but not UCP4. In line with this finding, neuroblastoma cells that display metabolic features of tumor cells express UCP2, but not UCP4. UCP2's occurrence in cancer, immunological and stem cells indicates that UCP2 is present in cells with highly proliferative potential, which have a glycolytic type of metabolism as a common feature, whereas UCP4 is strongly associated with non-proliferative highly differentiated neuronal cells.
Jaburek M, Varecha M, Gimeno RE, Dembski M, Jezek P, et al. (1999) Transport function and regulation of mitochondrial uncoupling proteins 2 and 3. J Biol Chem 274: 26003–26007. doi: 10.1074/jbc.274.37.26003
[6]
Hoang T, Smith MD, Jelokhani-Niaraki M (2012) Toward understanding the mechanism of ion transport activity of neuronal uncoupling proteins UCP2, UCP4, and UCP5. Biochemistry 51: 4004–4014. doi: 10.1021/bi3003378
[7]
Beck V, Jaburek M, Breen EP, Porter RK, Jezek P, et al. (2006) A new automated technique for the reconstitution of hydrophobic proteins into planar bilayer membranes. Studies of human recombinant uncoupling protein 1. Biochim Biophys Acta 1757: 474–479. doi: 10.1016/j.bbabio.2006.03.006
[8]
Rupprecht A, Sokolenko EA, Beck V, Ninnemann O, Jaburek M, et al. (2010) Role of the transmembrane potential in the membrane proton leak. Biophys J 98: 1503–1511. doi: 10.1016/j.bpj.2009.12.4301
[9]
Nicholls DG (2001) A history of UCP1. Biochem Soc Trans 29: 751–755. doi: 10.1042/bst0290751
[10]
Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84: 277–359. doi: 10.1152/physrev.00015.2003
[11]
Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, et al. (1997) Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet 15: 269–272. doi: 10.1038/ng0397-269
[12]
Rupprecht A, Brauer AU, Smorodchenko A, Goyn J, Hilse KE, et al. (2012) Quantification of uncoupling protein 2 reveals its main expression in immune cells and selective up-regulation during T-cell proliferation. PLoS ONE 7: e41406. doi: 10.1371/journal.pone.0041406
[13]
Pecqueur C, Alves-Guerra MC, Gelly C, Levi-Meyrueis C, Couplan E, et al. (2001) Uncoupling protein 2, in vivo distribution, induction upon oxidative stress, and evidence for translational regulation. J Biol Chem 276: 8705–8712. doi: 10.1074/jbc.m006938200
[14]
Rousset S, Mozo J, Dujardin G, Emre Y, Masscheleyn S, et al. (2007) UCP2 is a mitochondrial transporter with an unusual very short half-life. FEBS Lett 581: 479–482. doi: 10.1016/j.febslet.2007.01.010
[15]
Yu WM, Liu X, Shen J, Jovanovic O, Pohl EE, et al. (2013) Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 12: 62–74. doi: 10.1016/j.stem.2012.11.022
[16]
Smorodchenko A, Rupprecht A, Sarilova I, Ninnemann O, Brauer AU, et al. (2009) Comparative analysis of uncoupling protein 4 distribution in various tissues under physiological conditions and during development. Biochim Biophys Acta 1788: 2309–2319. doi: 10.1016/j.bbamem.2009.07.018
[17]
Smorodchenko A, Rupprecht A, Fuchs J, Gross J, Pohl EE (2011) Role of mitochondrial uncoupling protein 4 in rat inner ear. Mol Cell Neurosci 47: 244–253. doi: 10.1016/j.mcn.2011.03.002
[18]
Rousset S, Emre Y, Join-Lambert O, Hurtaud C, Ricquier D, et al. (2006) The uncoupling protein 2 modulates the cytokine balance in innate immunity. Cytokine 35: 135–142. doi: 10.1016/j.cyto.2006.07.012
[19]
Elorza A, Hyde B, Mikkola HK, Collins S, Shirihai OS (2008) UCP2 modulates cell proliferation through the MAPK/ERK pathway during erythropoiesis and has no effect on heme biosynthesis. J Biol Chem 283: 30461–30470. doi: 10.1074/jbc.m805400200
[20]
Zhang J, Khvorostov I, Hong JS, Oktay Y, Vergnes L, et al. (2011) UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J 30: 4860–4873. doi: 10.1038/emboj.2011.401
[21]
Pecqueur C, Alves-Guerra C, Ricquier D, Bouillaud F (2009) UCP2, a metabolic sensor coupling glucose oxidation to mitochondrial metabolism? IUBMB Life 61: 762–767. doi: 10.1002/iub.188
[22]
Samudio I, Fiegl M, McQueen T, Clise-Dwyer K, Andreeff M (2008) The warburg effect in leukemia-stroma cocultures is mediated by mitochondrial uncoupling associated with uncoupling protein 2 activation. Cancer Res 68: 5198–5205. doi: 10.1158/0008-5472.can-08-0555
[23]
Horimoto M, Resnick MB, Konkin TA, Routhier J, Wands JR, et al. (2004) Expression of uncoupling protein-2 in human colon cancer. Clin Cancer Res 10: 6203–6207. doi: 10.1158/1078-0432.ccr-04-0419
[24]
Simon-Areces J, Dietrich MO, Hermes G, Garcia-Segura LM, Arevalo MA, et al. (2012) UCP2 induced by natural birth regulates neuronal differentiation of the hippocampus and related adult behavior. PLoS ONE 7: e42911. doi: 10.1371/journal.pone.0042911
[25]
Alves-Guerra MC, Aheng C, Pecqueur C, Masscheleyn S, Tharaux PL, et al. (2012) Analysis of uncoupling protein 2-deficient mice upon anaesthesia and sedation revealed a role for UCP2 in locomotion. PLoS ONE 7: e41846. doi: 10.1371/journal.pone.0041846
[26]
Cardoso S, Santos MS, Moreno A, Moreira PI (2013) UCP2 and ANT differently modulate proton-leak in brain mitochondria of long-term hyperglycemic and recurrent hypoglycemic rats. J Bioenerg Biomembr 45: 397–407. doi: 10.1007/s10863-013-9503-2
[27]
Suski JM, Schonfeld P, Bonora M, Shabalina I, Pinton P, et al. (2012) Guanosine diphosphate exerts a lower effect on superoxide release from mitochondrial matrix in the brains of uncoupling protein-2 knockout mice: new evidence for a putative novel function of uncoupling proteins as superoxide anion transporters. Biochem Biophys Res Commun 428: 234–238. doi: 10.1016/j.bbrc.2012.10.025
[28]
Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87: 27–45.
[29]
Seiler AE, Spielmann H (2011) The validated embryonic stem cell test to predict embryotoxicity in vitro. Nat Protoc 6: 961–978. doi: 10.1038/nprot.2011.348
[30]
Visan A, Hayess K, Sittner D, Pohl EE, Riebeling C, et al. (2012) Neural differentiation of mouse embryonic stem cells as a tool to assess developmental neurotoxicity in vitro. Neurotoxicology 33: 1135–1146. doi: 10.1016/j.neuro.2012.06.006
[31]
Bonfanti L, Peretto P (2011) Adult neurogenesis in mammals—a theme with many variations. Eur J Neurosci 34: 930–950. doi: 10.1111/j.1460-9568.2011.07832.x
[32]
Curtis MA, Low VF, Faull RL (2012) Neurogenesis and progenitor cells in the adult human brain: a comparison between hippocampal and subventricular progenitor proliferation. Dev Neurobiol 72: 990–1005. doi: 10.1002/dneu.22028
Macintyre AN, Rathmell JC (2013) Activated lymphocytes as a metabolic model for carcinogenesis. Cancer and Metabolism 1..
[35]
Zhou W, Choi M, Margineantu D, Margaretha L, Hesson J, et al. (2012) HIF1alpha induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J 31: 2103–2116. doi: 10.1038/emboj.2012.71
[36]
Shyh-Chang N, Daley GQ, Cantley LC (2013) Stem cell metabolism in tissue development and aging. Development 140: 2535–2547. doi: 10.1242/dev.091777
[37]
Shetty PK, Galeffi F, Turner DA (2012) Cellular Links between Neuronal Activity and Energy Homeostasis. Front Pharmacol 3: 43. doi: 10.3389/fphar.2012.00043
[38]
Belanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14: 724–738. doi: 10.1016/j.cmet.2011.08.016
[39]
Pfeiffer T, Schuster S, Bonhoeffer S (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science 292: 504–507. doi: 10.1126/science.1058079
[40]
Mao W, Yu XX, Zhong A, Li W, Brush J, et al. (1999) UCP4, a novel brain-specific mitochondrial protein that reduces membrane potential in mammalian cells. FEBS Lett 443: 326–330. doi: 10.1016/s0014-5793(98)01713-x
[41]
Liu D, Chan SL, Souza-Pinto NC, Slevin JR, Wersto RP, et al. (2006) Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress. Neuromolecular Med 8: 389–414. doi: 10.1385/nmm:8:3:389
[42]
Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27: 441–464. doi: 10.1146/annurev-cellbio-092910-154237
[43]
Munyon WH, Merchant DJ (1959) The relation between glucose utilization, lactic acid production and utilization and the growth cycle of L strain fibroblasts. Exp Cell Res 17: 490–498. doi: 10.1016/0014-4827(59)90069-2
[44]
Shimasaki Y, Pan N, Messina LM, Li C, Chen K, et al.. (2013) Uncoupling Protein 2 Impacts Endothelial Phenotype via p53-Mediated Control of Mitochondrial Dynamics. Circ Res.
[45]
Alves-Guerra MC, Rousset S, Pecqueur C, Mallat Z, Blanc J, et al. (2003) Bone marrow transplantation reveals the in vivo expression of the mitochondrial uncoupling protein 2 in immune and nonimmune cells during inflammation. J Biol Chem 278: 42307–42312. doi: 10.1074/jbc.m306951200
[46]
Ayyasamy V, Owens KM, Desouki MM, Liang P, Bakin A, et al. (2011) Cellular model of Warburg effect identifies tumor promoting function of UCP2 in breast cancer and its suppression by genipin. PLoS ONE 6: e24792. doi: 10.1371/journal.pone.0024792
[47]
Derdak Z, Mark NM, Beldi G, Robson SC, Wands JR, et al. (2008) The mitochondrial uncoupling protein-2 promotes chemoresistance in cancer cells. Cancer Res 68: 2813–2819. doi: 10.1158/0008-5472.can-08-0053
[48]
Derdak Z, Fulop P, Sabo E, Tavares R, Berthiaume EP, et al. (2006) Enhanced colon tumor induction in uncoupling protein-2 deficient mice is associated with NF-kappaB activation and oxidative stress. Carcinogenesis 27: 956–961. doi: 10.1093/carcin/bgi335
[49]
Liu Y, Chen L, Xu X, Vicaut E, Sercombe R (2009) Both ischemic preconditioning and ghrelin administration protect hippocampus from ischemia/reperfusion and upregulate uncoupling protein-2. BMC Physiol 9: 17. doi: 10.1186/1472-6793-9-17
[50]
Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, et al. (2009) Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience 159: 993–1002. doi: 10.1016/j.neuroscience.2009.01.017
[51]
Haines BA, Mehta SL, Pratt SM, Warden CH, Li PA (2010) Deletion of mitochondrial uncoupling protein-2 increases ischemic brain damage after transient focal ischemia by altering gene expression patterns and enhancing inflammatory cytokines. J Cereb Blood Flow Metab 30: 1825–1833. doi: 10.1038/jcbfm.2010.52
[52]
Bechmann I, Diano S, Warden CH, Bartfai T, Nitsch R, et al. (2002) Brain mitochondrial uncoupling protein 2 (UCP2): a protective stress signal in neuronal injury. Biochem Pharmacol 64: 363–367. doi: 10.1016/s0006-2952(02)01166-8
[53]
Mattiasson G, Shamloo M, Gido G, Mathi K, Tomasevic G, et al. (2003) Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nat Med 9: 1062–1068. doi: 10.1038/nm903
[54]
Diano S, Matthews RT, Patrylo P, Yang L, Beal MF, et al. (2003) Uncoupling protein 2 prevents neuronal death including that occurring during seizures: a mechanism for preconditioning. Endocrinology 144: 5014–5021. doi: 10.1210/en.2003-0667
[55]
Sullivan PG, Dube C, Dorenbos K, Steward O, Baram TZ (2003) Mitochondrial uncoupling protein-2 protects the immature brain from excitotoxic neuronal death. Ann Neurol 53: 711–717. doi: 10.1002/ana.10543
[56]
Vogler S, Pahnke J, Rousset S, Ricquier D, Moch H, et al. (2006) Uncoupling protein 2 has protective function during experimental autoimmune encephalomyelitis. Am J Pathol 168: 1570–1575. doi: 10.2353/ajpath.2006.051069