全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Nutrient Deprivation Induces Property Variations in Spider Gluey Silk

DOI: 10.1371/journal.pone.0088487

Full-Text   Cite this paper   Add to My Lib

Abstract:

Understanding the mechanisms facilitating property variability in biological adhesives may promote biomimetic innovations. Spider gluey silks such as the spiral threads in orb webs and the gumfoot threads in cobwebs, both of which comprise of an axial thread coated by glue, are biological adhesives that have variable physical and chemical properties. Studies show that the physical and chemical properties of orb web gluey threads change when spiders are deprived of food. It is, however, unknown whether gumfoot threads undergo similar property variations when under nutritional stress. Here we tested whether protein deprivation induces similar variations in spiral and gumfoot thread morphology and stickiness. We manipulated protein intake for the orb web spider Nephila clavipes and the cobweb spider Latrodectus hesperus and measured the diameter, glue droplet volume, number of droplets per mm, axial thread width, thread stickiness and adhesive energy of their gluey silks. We found that the gluey silks of both species were stickier when the spiders were deprived of protein than when the spiders were fed protein. In N. clavipes a concomitant increase in glue droplet volume was found. Load-extension curves showed that protein deprivation induced glue property variations independent of the axial thread extensions in both species. We predicted that changes in salt composition of the glues were primarily responsible for the changes in stickiness of the silks, although changes in axial thread properties might also contribute. We, additionally, showed that N. clavipes' glue changes color under protein deprivation, probably as a consequence of changes to its biochemical composition.

References

[1]  Gay C (2002) Stickiness-some fundamentals of adhesion. Integr Comp Biol 42: 1123–1126. doi: 10.1093/icb/42.6.1123
[2]  Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multi-functional coatings. Science 318: 426–430. doi: 10.1126/science.1147241
[3]  Liu F, Jiang L (2011) Bio-inspired design of multi-scale structures for functional integration. Nano Today 6: 155–175. doi: 10.1016/j.nantod.2011.02.002
[4]  Brubaker CE, Messersmith PB (2012) The present and future of biologically-inspired adhesive interfaces and materials. Langmuir 28: 2200–2205. doi: 10.1021/la300044v
[5]  Sahni V, Blackledge TA, Dhinojwala A (2011) Changes in the adhesive properties of spider aggregate glue during the evolution of cobwebs. Sci Rep 1: 41. doi: 10.1038/srep00041
[6]  Sahni V, Labhasetwar DV, Dhinojwala A (2012) Spider silk inspired microthreads. Langmuir 28: 2206–2210. doi: 10.1021/la203275x
[7]  Townley MA, Tillinghast EK, Neefus CD (2006) Changes in composition of spider orb web sticky droplets with starvation and web removal and synthesis of sticky droplet compounds. J Exp Biol 209: 1463–1486. doi: 10.1242/jeb.02147
[8]  Opell BD, Lipkey GK, Hendricks ML, Vito ST (2009) Daily and seasonal changes in the stickiness of viscous capture threads in Argiope aurantia and Argiope trifasciata orb webs. J Exp Zool 311A: 217–225. doi: 10.1002/jez.526
[9]  Opell BD, Karinshak SE, Sigler MA (2011) Humidity affects the extensibility of an orb-weaving spider's viscous thread droplets. J Exp Biol 214: 2988–2993. doi: 10.1242/jeb.055996
[10]  Opell BD, Karinshak SE, Sigler MA (2013) Environmental response and adaptation of glycoprotein glue within the droplets of viscous prey capture threads from araneoid spiders. J Exp Biol 216: 3023–3034. doi: 10.1242/jeb.084822
[11]  Wu CC, Blamires SJ, Wu CL, Tso IM (2013) Wind induces variations in spider web geometry and sticky spiral droplet volume. J Exp Biol 216: 3342–3349. doi: 10.1242/jeb.083618
[12]  Koch AL (1997) Microbial physiology and ecology of slow growth. Micriobiol Mol Biol Rev 61: 305–318.
[13]  Higgins LE, Rankin MA (1999) Nutritional requirements for web synthesis in the tetragnathid spider Nephila clavipes. Physiol Entomol 24: 263–270. doi: 10.1046/j.1365-3032.1999.00135.x
[14]  Craig CL, Riekel C, Herberstein ME, Weber RS, Kaplan D, Pierce NE (2000) Evidence for diet effects on the composition of silk proteins produced by spiders. Mol Biol Evol 17: 1904–1913. doi: 10.1093/oxfordjournals.molbev.a026292
[15]  Blamires SJ, Wu CL, Tso IM (2012) Variation in protein intake induces variation in spider silk expression. PLoS ONE 7: e31626. doi: 10.1371/journal.pone.0031626
[16]  Craig CL (2003) Spiderwebs and Silk: Tracing Evolution from Molecules to Genes to Phenotypes. Oxford: Oxford University Press.
[17]  Harmer ATM, Blackledge TA, Madin JS, Herberstein ME (2011) High-performance spider webs: integrating biomechanics, ecology and behaviour. J Roy Soc Interf 8: 457–471. doi: 10.1098/rsif.2010.0454
[18]  Tarakanova A, Buehler MJ (2012) The role of capture spiral silk properties in the diversification of orb webs. J Roy Soc Interf 9: 3240–3248. doi: 10.1098/rsif.2012.0473
[19]  Peters HW (1987) Fine structure and function of capture threads. In: Nentwig W, editor Ecophysiology of Spiders. Berlin: Springer-Verlag. 187–202.
[20]  Opell BD, Hendricks ML (2010) The role of granules within viscous capture threads of orb-weaving spiders. J Exp Biol 213: 339–346. doi: 10.1242/jeb.036947
[21]  Torres FG, Troncoso OP, Cavalie F (2013) Physical characterization of the liquid adhesive from orb-weaving spiders. Mat Sci Eng C 34: 341–344. doi: 10.1016/j.msec.2013.09.030
[22]  Sahni V, Blackledge TA, Dhinojwala A (2010) Viscoelastic solids explain spider web stickiness. Nature Comm 1: 19. doi: 10.1038/ncomms1019
[23]  Hu X, Yuan J, Wang X, Vasanthavada K, Falick AM, et al. (2007) Analysis of aqueous glue coating proteins on the silk fibers of the cob weaver, Latrodectus hesperus. Biochemistry 46: 3294–3303. doi: 10.1021/bi602507e
[24]  Guinea GV, Cerdeira M, Plaza GR, Elices M, Perez-Riguero J (2010) Recovery in viscid line fibers. Biomacromolecules 11: 1174–1179. doi: 10.1021/bm901285c
[25]  Boutry C, Blackledge TA (2013) Wet webs work better: humidity, supercontraction and the performance of spider orb webs. J Exp Biol 216: 3606–3610. doi: 10.1242/jeb.084236
[26]  Vollrath F, Edmonds DT (1989) Modulation of the mechanical properties of spider silk by coating with water. Nature 340: 305–307. doi: 10.1038/340305a0
[27]  Swanson BO, Blackledge TA, Hayashi CY (2007) Spider capture silk: performance implications of variation in an exceptional biomaterial. J Exp Zool 307A: 654–666. doi: 10.1002/jez.420
[28]  Blackledge TA, Summers AP, Hayashi CY (2005) Gumfooted lines in black widow cobwebs and the mechanical properties of spider capture silk. Zoology 108: 41–46. doi: 10.1016/j.zool.2004.11.001
[29]  Tillinghast E, Townley MA (1987) Chemistry, physical properties and synthesis of Araneidae orb webs.In: Nentwig W, editor Ecophysiology of Spiders. Berlin: Springer-Verlag. 203–210.
[30]  Opell BD (1989) Measuring the stickiness of spider prey capture threads. J Arachnol 17: 112–114. doi: 10.1636/0161-8202(2002)030[0010:hsaatc]2.0.co;2
[31]  Perry DJ, Bittencourt D, Liberles-Siltberg J, Rech EL, Lewis RV (2010) Pyriform spider silk sequences reveal unique repetitive elements. Biomacromolecules 11: 3000–3006. doi: 10.1021/bm1007585
[32]  Sahni V, Harris J, Blackledge TA, Dhinojwala A (2012) Cobweb-weaving spiders produce different attachment discs for locomotion and prey capture. Nat Comm 3: 1106. doi: 10.1038/ncomms2099
[33]  Pugno NM, Cranford SW, Buehler MJ (2013) Synergetic material and structure optimization yields robust spider web anchorages. Small 9: 2747–2756. doi: 10.1002/smll.201201343
[34]  Blackledge TA, Zevenberg JM (2007) Condition-dependent spider web architecture in the western black widow, Latrodectus hesperus. Anim Behav 73: 855–864. doi: 10.1016/j.anbehav.2006.10.014
[35]  Boutry C, Blackledge TA (2008) The common house spider alters the material and mechanical properties of cobweb silk in response to different prey. J Exp Zool 309A: 542–552. doi: 10.1002/jez.487
[36]  Zevenberg JM, Schneider NK, Blackledge TA (2008) Fine dining or fortress? Functional shifts in spider web architecture by the western black widow Latrodectus hesperus. Anim Behav 76: 823–829. doi: 10.1016/j.anbehav.2008.05.008
[37]  Bonthrone KM, Vollrath F, Hunter BK, Sanders JKM (1992) The elasticity of spider's webs is due to water-induced mobility at a molecular level. Proc Roy Soc B 248: 141–144. doi: 10.1098/rspb.1992.0054
[38]  Agnarsson I, Blackledge TA (2009) Can a spider web be too sticky? tensile mechanics constrains the evolution of capture spiral stickiness in orb-weaving spiders. J Zool 278: 134–140. doi: 10.1111/j.1469-7998.2009.00558.x
[39]  Blackledge TA, Cardullo RA, Hayashi CY (2005) Polarized light microscopy, variability in spider silk diameters, and the mechanical characterization of spider silk. Invert Biol 124: 165–173. doi: 10.1111/j.1744-7410.2005.00016.x
[40]  Opell BD, Hendricks ML (2007) Adhesive recruitment by the viscous capture threads of araneoid orb-weaving spiders. J Exp Biol 210: 553–560. doi: 10.1242/jeb.02682
[41]  Opell BD, Schwend HS (2008) Persistent stickiness of viscous capture threads produced by araneoid orb-weaving spiders. J Exp Zool 309A: 11–16. doi: 10.1002/jez.426
[42]  Pouchkina NN, Stanchev BS, McQueen-Mason SJ (2003) From EST sequence to spider silk spinning: identification and molecular characterization of Nephila senegalensis major ampullate gland peroxidase NsPox. Insect Biochem Mol Biol 33: 229–338. doi: 10.1016/s0965-1748(02)00207-2
[43]  Putthanarat S, Tapadi P, Zarbook S, Miller LD, Eby RK, et al. (2004) The color of dragline silk produced in captivity by the spider Nephila clavipes. Polymer 45: 1933–1937. doi: 10.1016/j.polymer.2004.01.020
[44]  Blamires SJ, Tso IM (2013) Nutrient-mediated architectural plasticity of a predatory trap. PLoS ONE 8: e54558. doi: 10.1371/journal.pone.0054558
[45]  Zax DB, Armanios DE, Horak S, Malowniak C, Yang Z (2004) Variation of mechanical properties with amino acid content in the silk of Nephila clavipes. Biomacromolecules 5: 732–738. doi: 10.1021/bm034309x
[46]  Liu Y, Shao Z, Vollrath F (2008) Elasticity of spider silks. Biomacromolecules 9: 1782–1786. doi: 10.1021/bm7014174
[47]  Mayntz D, Raubenheimer D, Salomon M, Toft S, Simpson SJ (2005) Nutrient-specific foraging in invertebrate predators. Science 307: 111–113. doi: 10.1126/science.1105493
[48]  Foelix RF (1996) The Biology of Spiders, Second Edition. Oxford: Oxford University Press.
[49]  Osaki S (1989) Seasonal changes in color in spiders' silk. Acta Arachnol 38: 21–28. doi: 10.2476/asjaa.38.21
[50]  Craig CL, Bernard GD, Coddington JA (1994) Evolutionary shifts in the spectral properties of spider silks. Evolution 48: 287–296. doi: 10.2307/2410093
[51]  Vollrath F, Fairbrother WJ, Williams RJP, Tillinghast EK, Bernstein DT, et al. (1990) Compounds in the droplets of the orb spider's viscid spiral. Nature 345: 526–528. doi: 10.1038/345526a0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133