[1] | Gay C (2002) Stickiness-some fundamentals of adhesion. Integr Comp Biol 42: 1123–1126. doi: 10.1093/icb/42.6.1123
|
[2] | Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multi-functional coatings. Science 318: 426–430. doi: 10.1126/science.1147241
|
[3] | Liu F, Jiang L (2011) Bio-inspired design of multi-scale structures for functional integration. Nano Today 6: 155–175. doi: 10.1016/j.nantod.2011.02.002
|
[4] | Brubaker CE, Messersmith PB (2012) The present and future of biologically-inspired adhesive interfaces and materials. Langmuir 28: 2200–2205. doi: 10.1021/la300044v
|
[5] | Sahni V, Blackledge TA, Dhinojwala A (2011) Changes in the adhesive properties of spider aggregate glue during the evolution of cobwebs. Sci Rep 1: 41. doi: 10.1038/srep00041
|
[6] | Sahni V, Labhasetwar DV, Dhinojwala A (2012) Spider silk inspired microthreads. Langmuir 28: 2206–2210. doi: 10.1021/la203275x
|
[7] | Townley MA, Tillinghast EK, Neefus CD (2006) Changes in composition of spider orb web sticky droplets with starvation and web removal and synthesis of sticky droplet compounds. J Exp Biol 209: 1463–1486. doi: 10.1242/jeb.02147
|
[8] | Opell BD, Lipkey GK, Hendricks ML, Vito ST (2009) Daily and seasonal changes in the stickiness of viscous capture threads in Argiope aurantia and Argiope trifasciata orb webs. J Exp Zool 311A: 217–225. doi: 10.1002/jez.526
|
[9] | Opell BD, Karinshak SE, Sigler MA (2011) Humidity affects the extensibility of an orb-weaving spider's viscous thread droplets. J Exp Biol 214: 2988–2993. doi: 10.1242/jeb.055996
|
[10] | Opell BD, Karinshak SE, Sigler MA (2013) Environmental response and adaptation of glycoprotein glue within the droplets of viscous prey capture threads from araneoid spiders. J Exp Biol 216: 3023–3034. doi: 10.1242/jeb.084822
|
[11] | Wu CC, Blamires SJ, Wu CL, Tso IM (2013) Wind induces variations in spider web geometry and sticky spiral droplet volume. J Exp Biol 216: 3342–3349. doi: 10.1242/jeb.083618
|
[12] | Koch AL (1997) Microbial physiology and ecology of slow growth. Micriobiol Mol Biol Rev 61: 305–318.
|
[13] | Higgins LE, Rankin MA (1999) Nutritional requirements for web synthesis in the tetragnathid spider Nephila clavipes. Physiol Entomol 24: 263–270. doi: 10.1046/j.1365-3032.1999.00135.x
|
[14] | Craig CL, Riekel C, Herberstein ME, Weber RS, Kaplan D, Pierce NE (2000) Evidence for diet effects on the composition of silk proteins produced by spiders. Mol Biol Evol 17: 1904–1913. doi: 10.1093/oxfordjournals.molbev.a026292
|
[15] | Blamires SJ, Wu CL, Tso IM (2012) Variation in protein intake induces variation in spider silk expression. PLoS ONE 7: e31626. doi: 10.1371/journal.pone.0031626
|
[16] | Craig CL (2003) Spiderwebs and Silk: Tracing Evolution from Molecules to Genes to Phenotypes. Oxford: Oxford University Press.
|
[17] | Harmer ATM, Blackledge TA, Madin JS, Herberstein ME (2011) High-performance spider webs: integrating biomechanics, ecology and behaviour. J Roy Soc Interf 8: 457–471. doi: 10.1098/rsif.2010.0454
|
[18] | Tarakanova A, Buehler MJ (2012) The role of capture spiral silk properties in the diversification of orb webs. J Roy Soc Interf 9: 3240–3248. doi: 10.1098/rsif.2012.0473
|
[19] | Peters HW (1987) Fine structure and function of capture threads. In: Nentwig W, editor Ecophysiology of Spiders. Berlin: Springer-Verlag. 187–202.
|
[20] | Opell BD, Hendricks ML (2010) The role of granules within viscous capture threads of orb-weaving spiders. J Exp Biol 213: 339–346. doi: 10.1242/jeb.036947
|
[21] | Torres FG, Troncoso OP, Cavalie F (2013) Physical characterization of the liquid adhesive from orb-weaving spiders. Mat Sci Eng C 34: 341–344. doi: 10.1016/j.msec.2013.09.030
|
[22] | Sahni V, Blackledge TA, Dhinojwala A (2010) Viscoelastic solids explain spider web stickiness. Nature Comm 1: 19. doi: 10.1038/ncomms1019
|
[23] | Hu X, Yuan J, Wang X, Vasanthavada K, Falick AM, et al. (2007) Analysis of aqueous glue coating proteins on the silk fibers of the cob weaver, Latrodectus hesperus. Biochemistry 46: 3294–3303. doi: 10.1021/bi602507e
|
[24] | Guinea GV, Cerdeira M, Plaza GR, Elices M, Perez-Riguero J (2010) Recovery in viscid line fibers. Biomacromolecules 11: 1174–1179. doi: 10.1021/bm901285c
|
[25] | Boutry C, Blackledge TA (2013) Wet webs work better: humidity, supercontraction and the performance of spider orb webs. J Exp Biol 216: 3606–3610. doi: 10.1242/jeb.084236
|
[26] | Vollrath F, Edmonds DT (1989) Modulation of the mechanical properties of spider silk by coating with water. Nature 340: 305–307. doi: 10.1038/340305a0
|
[27] | Swanson BO, Blackledge TA, Hayashi CY (2007) Spider capture silk: performance implications of variation in an exceptional biomaterial. J Exp Zool 307A: 654–666. doi: 10.1002/jez.420
|
[28] | Blackledge TA, Summers AP, Hayashi CY (2005) Gumfooted lines in black widow cobwebs and the mechanical properties of spider capture silk. Zoology 108: 41–46. doi: 10.1016/j.zool.2004.11.001
|
[29] | Tillinghast E, Townley MA (1987) Chemistry, physical properties and synthesis of Araneidae orb webs.In: Nentwig W, editor Ecophysiology of Spiders. Berlin: Springer-Verlag. 203–210.
|
[30] | Opell BD (1989) Measuring the stickiness of spider prey capture threads. J Arachnol 17: 112–114. doi: 10.1636/0161-8202(2002)030[0010:hsaatc]2.0.co;2
|
[31] | Perry DJ, Bittencourt D, Liberles-Siltberg J, Rech EL, Lewis RV (2010) Pyriform spider silk sequences reveal unique repetitive elements. Biomacromolecules 11: 3000–3006. doi: 10.1021/bm1007585
|
[32] | Sahni V, Harris J, Blackledge TA, Dhinojwala A (2012) Cobweb-weaving spiders produce different attachment discs for locomotion and prey capture. Nat Comm 3: 1106. doi: 10.1038/ncomms2099
|
[33] | Pugno NM, Cranford SW, Buehler MJ (2013) Synergetic material and structure optimization yields robust spider web anchorages. Small 9: 2747–2756. doi: 10.1002/smll.201201343
|
[34] | Blackledge TA, Zevenberg JM (2007) Condition-dependent spider web architecture in the western black widow, Latrodectus hesperus. Anim Behav 73: 855–864. doi: 10.1016/j.anbehav.2006.10.014
|
[35] | Boutry C, Blackledge TA (2008) The common house spider alters the material and mechanical properties of cobweb silk in response to different prey. J Exp Zool 309A: 542–552. doi: 10.1002/jez.487
|
[36] | Zevenberg JM, Schneider NK, Blackledge TA (2008) Fine dining or fortress? Functional shifts in spider web architecture by the western black widow Latrodectus hesperus. Anim Behav 76: 823–829. doi: 10.1016/j.anbehav.2008.05.008
|
[37] | Bonthrone KM, Vollrath F, Hunter BK, Sanders JKM (1992) The elasticity of spider's webs is due to water-induced mobility at a molecular level. Proc Roy Soc B 248: 141–144. doi: 10.1098/rspb.1992.0054
|
[38] | Agnarsson I, Blackledge TA (2009) Can a spider web be too sticky? tensile mechanics constrains the evolution of capture spiral stickiness in orb-weaving spiders. J Zool 278: 134–140. doi: 10.1111/j.1469-7998.2009.00558.x
|
[39] | Blackledge TA, Cardullo RA, Hayashi CY (2005) Polarized light microscopy, variability in spider silk diameters, and the mechanical characterization of spider silk. Invert Biol 124: 165–173. doi: 10.1111/j.1744-7410.2005.00016.x
|
[40] | Opell BD, Hendricks ML (2007) Adhesive recruitment by the viscous capture threads of araneoid orb-weaving spiders. J Exp Biol 210: 553–560. doi: 10.1242/jeb.02682
|
[41] | Opell BD, Schwend HS (2008) Persistent stickiness of viscous capture threads produced by araneoid orb-weaving spiders. J Exp Zool 309A: 11–16. doi: 10.1002/jez.426
|
[42] | Pouchkina NN, Stanchev BS, McQueen-Mason SJ (2003) From EST sequence to spider silk spinning: identification and molecular characterization of Nephila senegalensis major ampullate gland peroxidase NsPox. Insect Biochem Mol Biol 33: 229–338. doi: 10.1016/s0965-1748(02)00207-2
|
[43] | Putthanarat S, Tapadi P, Zarbook S, Miller LD, Eby RK, et al. (2004) The color of dragline silk produced in captivity by the spider Nephila clavipes. Polymer 45: 1933–1937. doi: 10.1016/j.polymer.2004.01.020
|
[44] | Blamires SJ, Tso IM (2013) Nutrient-mediated architectural plasticity of a predatory trap. PLoS ONE 8: e54558. doi: 10.1371/journal.pone.0054558
|
[45] | Zax DB, Armanios DE, Horak S, Malowniak C, Yang Z (2004) Variation of mechanical properties with amino acid content in the silk of Nephila clavipes. Biomacromolecules 5: 732–738. doi: 10.1021/bm034309x
|
[46] | Liu Y, Shao Z, Vollrath F (2008) Elasticity of spider silks. Biomacromolecules 9: 1782–1786. doi: 10.1021/bm7014174
|
[47] | Mayntz D, Raubenheimer D, Salomon M, Toft S, Simpson SJ (2005) Nutrient-specific foraging in invertebrate predators. Science 307: 111–113. doi: 10.1126/science.1105493
|
[48] | Foelix RF (1996) The Biology of Spiders, Second Edition. Oxford: Oxford University Press.
|
[49] | Osaki S (1989) Seasonal changes in color in spiders' silk. Acta Arachnol 38: 21–28. doi: 10.2476/asjaa.38.21
|
[50] | Craig CL, Bernard GD, Coddington JA (1994) Evolutionary shifts in the spectral properties of spider silks. Evolution 48: 287–296. doi: 10.2307/2410093
|
[51] | Vollrath F, Fairbrother WJ, Williams RJP, Tillinghast EK, Bernstein DT, et al. (1990) Compounds in the droplets of the orb spider's viscid spiral. Nature 345: 526–528. doi: 10.1038/345526a0
|