[1] | Trimboli AJ, Fukino K, de Bruin A, Wei G, Shen L, et al. (2008) Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res 68: 937–945. doi: 10.1158/0008-5472.can-07-2148
|
[2] | Dave B, Mittal V, Tan NM, Chang JC (2012) Epithelial-mesenchymal transition, cancer stem cells and treatment resistance. Breast Cancer Res 14: 202. doi: 10.1186/bcr2938
|
[3] | Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7: 834–846. doi: 10.1038/nrc2256
|
[4] | Paez D, Labonte MJ, Bohanes P, Zhang W, Benhanim L, et al. (2012) Cancer Dormancy: A Model of Early Dissemination and Late Cancer Recurrence. Clin Cancer Res 18: 645–653. doi: 10.1158/1078-0432.ccr-11-2186
|
[5] | Brackstone M, Townson JL, Chambers AF (2007) Tumour dormancy in breast cancer: an update. Breast Cancer Res 9: 208. doi: 10.1186/bcr1677
|
[6] | Willis L, Alarcon T, Elia G, Jones JL, Wright NA, et al. (2010) Breast Cancer Dormancy Can Be Maintained by Small Numbers of Micrometastases. Cancer Res 70: 4310–4317. doi: 10.1158/0008-5472.can-09-3144
|
[7] | Amano M, Ito M, Kimura K, Fukata Y, Chihara K, et al. (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 271: 20246–20249. doi: 10.1074/jbc.271.34.20246
|
[8] | Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, et al. (1999) Signaling from rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285: 895–898. doi: 10.1126/science.285.5429.895
|
[9] | Tian YS, Kim HJ, Kim HM (2009) Rho-associated kinase (ROCK) inhibition reverses low cell activity on hydrophobic surfaces. Biochem Biophys Res Commun 386: 499–503. doi: 10.1016/j.bbrc.2009.06.087
|
[10] | Yang S, Tian YS, Lee YJ, Yu FH, Kim HM (2011) Mechanisms by which the inhibition of specific intracellular signaling pathways increase osteo blast proliferation on apatite surfaces. Biomaterials 32: 2851–2861. doi: 10.1016/j.biomaterials.2011.01.015
|
[11] | Yang S, Kim HM (2012) The RhoA-ROCK-PTEN pathway as a molecular switch for anchorage dependent cell behavior. Biomaterials 33: 2902–2915. doi: 10.1016/j.biomaterials.2011.12.051
|
[12] | Zheng L, Kim HM (2012) Low-Rac1 activity downregulates MC3T3-E1 osteoblastic cell motility on a nanoscale topography prepared on polystyrene substrates in vitro. J Biomed Mater Res A 101: 1629–1636. doi: 10.1002/jbm.a.34463
|
[13] | Barkan D, Green JE, Chambers AF (2010) Extracellular matrix: A gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer 46: 1181–1188. doi: 10.1016/j.ejca.2010.02.027
|
[14] | Satoh K, Fukumoto Y, Shimokawa H (2011) Rho-kinase: important new therapeutic target in cardiovascular diseases. Am J Physiol-Heart C 301: H287–H296. doi: 10.1152/ajpheart.00327.2011
|
[15] | Shimokawa H, Takeshita A (2005) Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscl Throm Vas 25: 1767–1775. doi: 10.1161/01.atv.0000176193.83629.c8
|
[16] | Loirand G, Pacaud P (2010) The role of rho protein signaling in hypertension. Nat Rev Cardiol 7: 637–647. doi: 10.1038/nrcardio.2010.136
|
[17] | Fujita H, Fukumoto Y, Saji K, Sugimura K, Demachi J, et al. (2010) Acute vasodilator effects of inhaled fasudil, a specific Rho-kinase inhibitor, in patients with pulmonary arterial hypertension. Heart Vessels 25: 144–149. doi: 10.1007/s00380-009-1176-8
|
[18] | Lee GY, Kenny PA, Lee EH, Bissell MJ (2007) Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4: 359–365. doi: 10.1038/nmeth1015
|
[19] | Barkan D, Kleinman H, Simmons JL, Asmussen H, Kamaraju AK, et al. (2008) Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res 68: 6241–6250. doi: 10.1158/0008-5472.can-07-6849
|
[20] | Tomschy A, Fauser C, Landwehr R, Engel J (1996) Homophilic adhesion of E-cadherin occurs by a co-operative two-step interaction of N-terminal domains. Embo J 15: 3507–3514.
|
[21] | Gottardi CJ, Gumbiner BM (2001) Adhesion signaling: How beta-catenin interacts with its partners. Curr Biol 11: R792–R794. doi: 10.1016/s0960-9822(01)00473-0
|
[22] | Akhtar N, Hudson KR, Hotchin NA (2000) Co-localization of Rac1 and E-cadherin in human epidermal keratinocytes. Cell Adhes Commun 7: 465–476. doi: 10.3109/15419060009040304
|
[23] | Hu LM, Hittelman W, Lu T, Ji P, Arlinghaus R, et al. (2009) NGAL decreases E-cadherin-mediated cell-cell adhesion and increases cell motility and invasion through Rac1 in colon carcinoma cells. Lab Invest 89: 531–548. doi: 10.1038/labinvest.2009.17
|
[24] | Ray RM, Vaidya RJ, Johnson LR (2007) MEK/ERK regulates adherens junctions and migration through Rac1. Cell Motil Cytoskel 64: 143–156. doi: 10.1002/cm.20172
|
[25] | Braga VMM, Betson M, Li XD, Lamarche-Vane N (2000) Activation of the small GTPase Rac is sufficient to disrupt cadherin-dependent cell-cell adhesion in normal human keratinocytes. Mol Biol Cell 11: 3703–3721. doi: 10.1091/mbc.11.11.3703
|
[26] | Lozano E, Frasa MAM, Smolarczyk K, Knaus UG, Braga VMM (2008) PAK is required for the disruption of E-cadherin adhesion by the small GTPase Rac. J Cell Sci 121: 933–938. doi: 10.1242/jcs.016121
|
[27] | Hage B, Meinel K, Baum I, Giehl K, Menke A (2009) Rac1 activation inhibits E-cadherin-mediated adherens junctions via binding to IQGAP1 in pancreatic carcinoma cells. Cell Commun Signal 7: 23. doi: 10.1186/1478-811x-7-23
|
[28] | Yamaguchi Y, Katoh H, Yasui H, Mori K, Negishi M (2001) RhoA inhibits the nerve growth factor-induced Rac1 activation through Rho-associated kinase-dependent pathway. J Biol Chem 276: 18977–18983. doi: 10.1074/jbc.m100254200
|
[29] | Guilluy C, Garcia-Mata R, Burridge K (2011) Rho protein crosstalk: another social network? Trends Cell Biol 21: 718–726. doi: 10.1016/j.tcb.2011.08.002
|
[30] | Yang WH, Lan HY, Huang CH, Tai SK, Tzeng CH, et al. (2012) RAC1 activation mediates Twist1-induced cancer cell migration. Nat Cell Biol 14: 366–374. doi: 10.1038/ncb2455
|
[31] | Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, et al. (1993) Occludin - a Novel Integral Membrane-Protein Localizing at Tight Junctions. J Cell Biol 123: 1777–1788. doi: 10.1083/jcb.123.6.1777
|
[32] | Larue L, Bellacosa A (2005) Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3 ' kinase/AKT pathways. Oncogene 24: 7443–7454. doi: 10.1038/sj.onc.1209091
|
[33] | Toker A, Yoeli-Lerner M (2006) Akt signaling and cancer: Surviving but not moving on. Cancer Res 66: 3963–3966. doi: 10.1158/0008-5472.can-06-0743
|
[34] | Grille SJ, Bellacosa A, Upson J, Klein-Szanto AJ, van Roy F, et al. (2003) The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res 63: 2172–2178.
|
[35] | Zavadil J, Bottinger EP (2005) TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24: 5764–5774. doi: 10.1038/sj.onc.1208927
|
[36] | Peng J, Zhang G, Wang QS, Huang JG, Ma H, et al. (2012) ROCK Cooperated with ET-1 to Induce Epithelial to Mesenchymal Transition through SLUG in Human Ovarian Cancer Cells. Biosci Biotech Bioch 76: 42–47. doi: 10.1271/bbb.110411
|
[37] | Croft DR, Sahai E, Mavria G, Li SX, Tsai J, et al. (2004) Conditional ROCK activation in vivo induces tumor cell dissemination and angiogenesis. Cancer Res 64: 8994–9001. doi: 10.1158/0008-5472.can-04-2052
|
[38] | Thiery JP (2003) Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15: 740–746. doi: 10.1016/j.ceb.2003.10.006
|
[39] | Samarin SN, Ivanov AI, Flatau G, Parkos CA, Nusrat A (2007) Rho/Rho-associated kinase-II signaling mediates disassembly of epithelial apical junctions. Mol Biol Cell 18: 3429–3439. doi: 10.1091/mbc.e07-04-0315
|
[40] | Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, et al. (2003) The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 116: 499–511. doi: 10.1242/jcs.00224
|
[41] | Come C, Magnino F, Bibeau F, Barbara PD, Becker KF, et al. (2006) Snail and slug play distinct roles during breast carcinoma progression. Clin Cancer Res 12: 5395–5402. doi: 10.1158/1078-0432.ccr-06-0478
|
[42] | Tsuji T, Ishizaki T, Okamoto M, Higashida C, Kimura K, et al. (2002) ROCK and mDia1 antagonize in Rho-dependent Rac activation in Swiss 3T3 fibroblasts. J Cell Biol 157: 819–830. doi: 10.1083/jcb.200112107
|
[43] | Ohta Y, Hartwig JH, Stossel TP (2006) FilGAP, a Rho- and ROCK-regulated GAP for Rac binds filamin A to control actin remodelling. Nat Cell Biol 8: 803–814. doi: 10.1038/ncb1437
|
[44] | Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, et al. (2008) Rac Activation and Inactivation Control Plasticity of Tumor Cell Movement. Cell 135: 510–523. doi: 10.1016/j.cell.2008.09.043
|
[45] | Brown JH, Del Re DP, Sussman MA (2006) The Rac and Rho hall of fame - A decade of hypertrophic signaling hits. Circ Res 98: 730–742. doi: 10.1161/01.res.0000216039.75913.9e
|
[46] | Schuldt A (2011) Cell Growth Rac1 Sizes up Mtor. Nat Rev Mol Cell Bio 12: 343–343. doi: 10.1038/nrm3124
|
[47] | Waterman-Storer CM, Worthylake RA, Liu BP, Burridge K, Salmon ED (1999) Microtubule growth activates Rac1 to promote lamellipodial profusion in fibroblasts. Nat Cell Biol 1: 45–50. doi: 10.1038/9018
|
[48] | Stam JC, Michiels F, van der Kammen RA, Moolenaar WH, Collard JG (1998) Invasion of T-lymphoma cells: cooperation between Rho family GTPases and lysophospholipid receptor signaling. Embo J 17: 4066–4074. doi: 10.1093/emboj/17.14.4066
|
[49] | Xue B, Krishnamurthy K, Allred DC, Muthuswamy SK (2013) Loss of Par3 promotes breast cancer metastasis by cornpromising cell-cell cohesion. Nat Cell Biol 15: 189–200. doi: 10.1038/ncb2663
|
[50] | Monaghan-Benson E, Burridge K (2013) Mutant B-RAF regulates a Rac-dependent cadherin switch in melanoma. Oncogene 32: 4836–4844. doi: 10.1038/onc.2012.492
|
[51] | Yan D, Avtanski D, Saxena NK, Sharma D (2012) Leptin-induced Epithelial-Mesenchymal Transition in Breast Cancer Cells Requires beta-Catenin Activation via Akt/GSK3- and MTA1/Wnt1 Protein-dependent Pathways. J Biol Chem 287: 8598–8612. doi: 10.1074/jbc.m111.322800
|
[52] | Li JL, Zhou BHP (2011) Activation of beta-catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters. Bmc Cancer 11: 49. doi: 10.1186/1471-2407-11-49
|
[53] | Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D, et al. (2006) Tumor invasion in the absence of epithelial-mesenchymal transition: Podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 9: 261–272. doi: 10.1016/j.ccr.2006.03.010
|
[54] | Salhia B, Rutten F, Nakada M, Beaudry C, Berens M, et al. (2005) Inhibition of Rho-kinase affects astrocytoma morphology, motility, and invasion through activation of Rac1. Cancer Res 65: 8792–8800. doi: 10.1158/0008-5472.can-05-0160
|