全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Expression and Regulation of Prostate Apoptosis Response-4 (Par-4) in Human Glioma Stem Cells in Drug-Induced Apoptosis

DOI: 10.1371/journal.pone.0088505

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gliomas are the most common and aggressive of brain tumors in adults. Cancer stem cells (CSC) contribute to chemoresistance in many solid tumors including gliomas. The function of prostate apoptosis response-4 (Par-4) as a pro-apoptotic protein is well documented in many cancers; however, its role in CSC remains obscure. In this study, we aimed to explore the role of Par-4 in drug-induced cytotoxicity using human glioma stem cell line - HNGC-2 and primary culture (G1) derived from high grade glioma. We show that among the panel of drugs- lomustine, carmustine, UCN-01, oxaliplatin, temozolomide and tamoxifen (TAM) screened, only TAM induced cell death and up-regulated Par-4 levels significantly. TAM-induced apoptosis was confirmed by PARP cleavage, Annexin V and propidium iodide staining and caspase-3 activity. Knock down of Par-4 by siRNA inhibited cell death by TAM, suggesting the role of Par-4 in induction of apoptosis. We also demonstrate that the mechanism involves break down of mitochondrial membrane potential, down regulation of Bcl-2 and reduced activation of Akt and ERK 42/44. Secretory Par-4 and GRP-78 were significantly expressed in HNGC-2 cells on exposure to TAM and specific antibodies to these molecules inhibited cell death suggesting that extrinsic Par-4 is important in TAM-induced apoptosis. Interestingly, TAM decreased the expression of neural stem cell markers - Nestin, Bmi1, Vimentin, Sox2, and Musashi in HNGC-2 cell line and G1 cells implicating its potential as a stemness inhibiting drug. Based on these data and our findings that enhanced levels of Par-4 sensitize the resistant glioma stem cells to drug-induced apoptosis, we propose that Par-4 may be explored for evaluating anti-tumor agents in CSC.

References

[1]  Demuth T, Rennert JL, Hoelzinger DB, Reavie LB, Nakada M, et al. (2008) Glioma cells on the run - the migratory transcriptome of 10 human glioma cell lines. BMC Genomics 9: 54. doi: 10.1186/1471-2164-9-54
[2]  Tait MJ, Petrik V, Loosemore A, Bell BA, Papadopoulos MC (2007) Survival of patients with glioblastoma multiforme has not improved between 1993 and 2004: analysis of 625 cases. Br J Neurosurg 21: 496–500. doi: 10.1080/02688690701449251
[3]  Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414: 105–111. doi: 10.1038/35102167
[4]  Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8: 755–768. doi: 10.1038/nrc2499
[5]  Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, et al. (2004) Identification of human brain tumour initiating cells. Nature 432: 396–401. doi: 10.1038/nature03128
[6]  Lu C, Shervington A (2008) Chemoresistance in gliomas. Mol Cell Biochem 312: 71–80. doi: 10.1007/s11010-008-9722-8
[7]  Liu G, Yuan X, Zeng Z, Tunici P, Ng H, et al. (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5: 67.
[8]  Beier D, Schulz JB, Beier CP (2011) Chemoresistance of glioblastoma cancer stem cells–much more complex than expected. Mol Cancer 10: 128. doi: 10.1186/1476-4598-10-128
[9]  Shiras A, Bhosale A, Shepal V, Shukla R, Baburao VS, et al. (2003) A unique model system for tumor progression in GBM comprising two developed human neuro-epithelial cell lines with differential transforming potential and coexpressing neuronal and glial markers. Neoplasia 5: 520–532. doi: 10.1016/s1476-5586(03)80036-2
[10]  Shiras A, Chettiar ST, Shepal V, Rajendran G, Prasad GR, et al. (2007) Spontaneous transformation of human adult nontumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model of glioblastoma. Stem Cells 25: 1478–1489. doi: 10.1634/stemcells.2006-0585
[11]  Shrestha-Bhattarai T, Rangnekar VM (2010) Cancer-selective apoptotic effects of extracellular and intracellular Par-4. Oncogene 29: 3873–3880. doi: 10.1038/onc.2010.141
[12]  Franchitto A, Torrice A, Semeraro R, Napoli C, Nuzzo G, et al. (2010) Prostate apoptosis response-4 is expressed in normal cholangiocytes, is down-regulated in human cholangiocarcinoma, and promotes apoptosis of neoplastic cholangiocytes when induced pharmacologically. Am J Pathol 177: 1779–1790. doi: 10.2353/ajpath.2010.091171
[13]  Irby RB, Kline CL (2013) Par-4 as a potential target for cancer therapy. Expert Opin Ther Targets 17: 77–87. doi: 10.1517/14728222.2013.731047
[14]  Cook J, Krishnan S, Ananth S, Sells SF, Shi Y, et al. (1999) Decreased expression of the pro-apoptotic protein Par-4 in renal cell carcinoma. Oncogene 18: 1205–1208. doi: 10.1038/sj.onc.1202416
[15]  Moreno-Bueno G, Fernandez-Marcos PJ, Collado M, Tendero MJ, Rodriguez-Pinilla SM, et al. (2007) Inactivation of the candidate tumor suppressor par-4 in endometrial cancer. Cancer Res 67: 1927–1934. doi: 10.1158/0008-5472.can-06-2687
[16]  Qiu G, Ahmed M, Sells SF, Mohiuddin M, Weinstein MH, et al. (1999) Mutually exclusive expression patterns of Bcl-2 and Par-4 in human prostate tumors consistent with down-regulation of Bcl-2 by Par-4. Oncogene 18: 623–631. doi: 10.1038/sj.onc.1202344
[17]  Alvarez JV, Pan TC, Ruth J, Feng Y, Zhou A, et al. (2013) Par-4 Downregulation Promotes Breast Cancer Recurrence by Preventing Multinucleation following Targeted Therapy. Cancer Cell 24: 30–44. doi: 10.1016/j.ccr.2013.05.007
[18]  Lee TJ, Jang JH, Noh HJ, Park EJ, Choi KS, et al. (2010) Overexpression of Par-4 sensitizes TRAIL-induced apoptosis via inactivation of NF-kappaB and Akt signaling pathways in renal cancer cells. J Cell Biochem 109: 885–895. doi: 10.1002/jcb.22504
[19]  Wang BD, Kline CL, Pastor DM, Olson TL, Frank B, et al. (2010) Prostate apoptosis response protein 4 sensitizes human colon cancer cells to chemotherapeutic 5-FU through mediation of an NF kappaB and microRNA network. Mol Cancer 9: 98. doi: 10.1186/1476-4598-9-98
[20]  Diaz-Meco MT, Lallena MJ, Monjas A, Frutos S, Moscat J (1999) Inactivation of the inhibitory kappaB protein kinase/nuclear factor kappaB pathway by Par-4 expression potentiates tumor necrosis factor alpha-induced apoptosis. J Biol Chem 274: 19606–19612. doi: 10.1074/jbc.274.28.19606
[21]  Burikhanov R, Zhao Y, Goswami A, Qiu S, Schwarze SR, et al. (2009) The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis. Cell 138: 377–388. doi: 10.1016/j.cell.2009.05.022
[22]  Parney IF, Chang SM (2003) Current chemotherapy for glioblastoma. Cancer J 9: 149–156. doi: 10.1097/00130404-200305000-00003
[23]  Spence AM, Peterson RA, Scharnhorst JD, Silbergeld DL, Rostomily RC (2004) Phase II study of concurrent continuous Temozolomide (TMZ) and Tamoxifen (TMX) for recurrent malignant astrocytic gliomas. J Neurooncol 70: 91–95. doi: 10.1023/b:neon.0000040837.68411.97
[24]  Sabioni P, Baretta IP, Ninomiya EM, Gustafson L, Rodrigues AL, et al. (2008) The antimanic-like effect of tamoxifen: Behavioural comparison with other PKC-inhibiting and antiestrogenic drugs. Prog Neuropsychopharmacol Biol Psychiatry 32: 1927–1931. doi: 10.1016/j.pnpbp.2008.09.023
[25]  Hui AM, Zhang W, Chen W, Xi D, Purow B, et al. (2004) Agents with selective estrogen receptor (ER) modulator activity induce apoptosis in vitro and in vivo in ER-negative glioma cells. Cancer Res 64: 9115–9123. doi: 10.1158/0008-5472.can-04-2740
[26]  Azmi AS, Wang Z, Burikhanov R, Rangnekar VM, Wang G, et al. (2008) Critical role of prostate apoptosis response-4 in determining the sensitivity of pancreatic cancer cells to small-molecule inhibitor-induced apoptosis. Mol Cancer Ther 7: 2884–2893. doi: 10.1158/1535-7163.mct-08-0438
[27]  El Guendy N, Rangnekar VM (2003) Apoptosis by Par-4 in cancer and neurodegenerative diseases. Exp Cell Res 283: 51–66. doi: 10.1016/s0014-4827(02)00016-2
[28]  Boehrer S, Chow KU, Beske F, Kukoc-Zivojnov N, Puccetti E, et al. (2002) In lymphatic cells par-4 sensitizes to apoptosis by down-regulating bcl-2 and promoting disruption of mitochondrial membrane potential and caspase activation. Cancer Res 62: 1768–1775.
[29]  Qiu G, Ahmed M, Sells SF, Mohiuddin M, Weinstein MH, et al. (1999) Mutually exclusive expression patterns of Bcl-2 and Par-4 in human prostate tumors consistent with down-regulation of Bcl-2 by Par-4. Oncogene 18: 623–631. doi: 10.1038/sj.onc.1202344
[30]  Batista LF, Roos WP, Christmann M, Menck CF, Kaina B (2007) Differential sensitivity of malignant glioma cells to methylating and chloroethylating anticancer drugs: p53 determines the switch by regulating xpc, ddb2, and DNA double-strand breaks. Cancer Res 67: 11886–11895. doi: 10.1158/0008-5472.can-07-2964
[31]  Benzina S, Altmeyer A, Malek F, Dufour P, Denis JM, et al. (2008) High-LET radiation combined with oxaliplatin induce autophagy in U-87 glioblastoma cells. Cancer Lett 264: 63–70. doi: 10.1016/j.canlet.2008.01.023
[32]  Meng QH, Zhou LX, Luo JL, Cao JP, Tong J, et al. (2005) Effect of 7-hydroxystaurosporine on glioblastoma cell invasion and migration. Acta Pharmacol Sin 26: 492–499. doi: 10.1111/j.1745-7254.2005.00087.x
[33]  Patel S, DiBiase S, Meisenberg B, Flannery T, Patel A, et al. (2012) Phase I clinical trial assessing temozolomide and tamoxifen with concomitant radiotherapy for treatment of high-grade glioma. Int J Radiat Oncol Biol Phys 82: 739–742. doi: 10.1016/j.ijrobp.2010.12.053
[34]  Hui AM, Zhang W, Chen W, Xi D, Purow B, et al. (2004) Agents with selective estrogen receptor (ER) modulator activity induce apoptosis in vitro and in vivo in ER-negative glioma cells. Cancer Res 64: 9115–9123. doi: 10.1158/0008-5472.can-04-2740
[35]  Vetterkind S, Boosen M, Scheidtmann KH, Preuss U (2005) Ectopic expression of Par-4 leads to induction of apoptosis in CNS tumor cell lines. Int J Oncol 26: 159–167. doi: 10.3892/ijo.26.1.159
[36]  Lee JW, Lee KF, Hsu HY, Hsu LP, Shih WL, et al. (2007) Protein expression and intracellular localization of prostate apoptosis response-4 (Par-4) are associated with apoptosis induction in nasopharyngeal carcinoma cell lines. Cancer Lett 257: 252–262. doi: 10.1016/j.canlet.2007.08.004
[37]  Chakraborty M, Qiu SG, Vasudevan KM, Rangnekar VM (2001) Par-4 drives trafficking and activation of Fas and Fasl to induce prostate cancer cell apoptosis and tumor regression. Cancer Res 61: 7255–7263.
[38]  Nalca A, Qiu SG, El Guendy N, Krishnan S, Rangnekar VM (1999) Oncogenic Ras sensitizes cells to apoptosis by Par-4. J Biol Chem 274: 29976–29983. doi: 10.1074/jbc.274.42.29976
[39]  Barkett M, Gilmore TD (1999) Control of apoptosis by Rel/NF-kappaB transcription factors. Oncogene 18: 6910–6924. doi: 10.1038/sj.onc.1203238
[40]  Boehrer S, Chow KU, Ruthardt M, Hoelzer D, Mitrou PS, et al. (2002) Expression and function of prostate-apoptosis-response-gene-4 in lymphatic cells. Leuk Lymphoma 43: 1737–1741. doi: 10.1080/1042819021000006510
[41]  Cheema SK, Mishra SK, Rangnekar VM, Tari AM, Kumar R, et al. (2003) Par-4 transcriptionally regulates Bcl-2 through a WT1-binding site on the bcl-2 promoter. J Biol Chem 278: 19995–20005. doi: 10.1074/jbc.m205865200
[42]  Kallio A, Zheng A, Dahllund J, Heiskanen KM, Harkonen P (2005) Role of mitochondria in tamoxifen-induced rapid death of MCF-7 breast cancer cells. Apoptosis 10: 1395–1410. doi: 10.1007/s10495-005-2137-z
[43]  Chaudhry P, Singh M, Parent S, Asselin E (2012) Prostate apoptosis response 4 (Par-4), a novel substrate of caspase-3 during apoptosis activation. Mol Cell Biol 32: 826–839. doi: 10.1128/mcb.06321-11
[44]  Thayyullathil F, Pallichankandy S, Rahman A, Kizhakkayil J, Chathoth S, et al. (2013) Caspase-3 mediated release of SAC domain containing fragment from Par-4 is necessary for the sphingosine-induced apoptosis in Jurkat cells. J Mol Signal 8: 2. doi: 10.1186/1750-2187-8-2
[45]  Matsuoka H, Tsubaki M, Yamazoe Y, Ogaki M, Satou T, et al. (2009) Tamoxifen inhibits tumor cell invasion and metastasis in mouse melanoma through suppression of PKC/MEK/ERK and PKC/PI3K/Akt pathways. Exp Cell Res 315: 2022–2032. doi: 10.1016/j.yexcr.2009.04.009
[46]  Block M, Grundker C, Fister S, Kubin J, Wilkens L, et al. (2012) Inhibition of the AKT/mTOR and erbB pathways by gefitinib, perifosine and analogs of gonadotropin-releasing hormone I and II to overcome tamoxifen resistance in breast cancer cells. Int J Oncol 41: 1845–1854. doi: 10.3892/ijo.2012.1591
[47]  Tan J, You Y, Xu T, Yu P, Wu D, et al. (2014) Par-4 downregulation confers cisplatin resistance in pancreatic cancer cells via PI3K/Akt pathway-dependent EMT. Toxicol Lett 224: 7–15. doi: 10.1016/j.toxlet.2013.10.008
[48]  Joshi J, Fernandez-Marcos PJ, Galvez A, Amanchy R, Linares JF, et al. (2008) Par-4 inhibits Akt and suppresses Ras-induced lung tumorigenesis. EMBO J 27: 2181–2193. doi: 10.1038/emboj.2008.149
[49]  Xiao H, Goldthwait DA, Mapstone T (1994) The identification of four protein kinase C isoforms in human glioblastoma cell lines: PKC alpha, gamma, epsilon, and zeta. J Neurosurg 81: 734–740. doi: 10.3171/jns.1994.81.5.0734
[50]  Diaz-Meco MT, Municio MM, Frutos S, Sanchez P, Lozano J, et al. (1996) The product of par-4, a gene induced during apoptosis, interacts selectively with the atypical isoforms of protein kinase C. Cell. 86: 777–786. doi: 10.1016/s0092-8674(00)80152-x
[51]  Zheng A, Kallio A, Harkonen P (2007) Tamoxifen-induced rapid death of MCF-7 breast cancer cells is mediated via extracellularly signal-regulated kinase signaling and can be abrogated by estrogen. Endocrinology 148: 2764–2777. doi: 10.1210/en.2006-1269
[52]  Matsuoka H, Tsubaki M, Yamazoe Y, Ogaki M, Satou T, et al. (2009) Tamoxifen inhibits tumor cell invasion and metastasis in mouse melanoma through suppression of PKC/MEK/ERK and PKC/PI3K/Akt pathways. Exp Cell Res 315: 2022–2032. doi: 10.1016/j.yexcr.2009.04.009
[53]  Burikhanov R, Shrestha-Bhattarai T, Qiu S, Shukla N, Hebbar N, et al. (2013) Novel mechanism of apoptosis resistance in cancer mediated by extracellular PAR-4. Cancer Res 73: 1011–1019. doi: 10.1158/0008-5472.can-12-3212
[54]  Rah B, Amin H, Yousuf K, Khan S, Jamwal G, et al. (2012) A novel MMP-2 inhibitor 3-azidowithaferin A (3-azidoWA) abrogates cancer cell invasion and angiogenesis by modulating extracellular Par-4. PLoS One 7: e44039. doi: 10.1371/journal.pone.0044039
[55]  Lee AS (2007) GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res 67: 3496–3499. doi: 10.1158/0008-5472.can-07-0325
[56]  Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, et al. (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9: 157–173. doi: 10.1016/j.ccr.2006.02.019
[57]  Sai K, Wang S, Balasubramaniyan V, Conrad C, Lang FF, et al. (2012) Induction of cell-cycle arrest and apoptosis in glioblastoma stem-like cells by WP1193, a novel small molecule inhibitor of the JAK2/STAT3 pathway. J Neurooncol 107: 487–501. doi: 10.1007/s11060-011-0786-z
[58]  Campos B, Wan F, Farhadi M, Ernst A, Zeppernick F, et al. (2010) Differentiation therapy exerts antitumor effects on stem-like glioma cells. Clin Cancer Res 16: 2715–2728. doi: 10.1158/1078-0432.ccr-09-1800
[59]  Juan Sebastian Yakisich (2012) Challenges and limitations of targeting cancer stem cells and/or the tumor microenvironment. Drugs and Therapy Studies 2.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133