Hepatitis C virus (HCV) infection is a major cause of liver disease. The molecular machinery of HCV assembly and particle release remains obscure. A better understanding of the assembly events might reveal new potential antiviral strategies. It was suggested that the nonstructural protein 5A (NS5A), an attractive recent drug target, participates in the production of infectious particles as a result of its interaction with the HCV core protein. However, prior to the present study, the NS5A-binding site in the viral core remained unknown. We found that the D1 domain of core contains the NS5A-binding site with the strongest interacting capacity in the basic P38-K74 cluster. We also demonstrated that the N-terminal basic residues of core at positions 50, 51, 59 and 62 were required for NS5A binding. Analysis of all substitution combinations of R50A, K51A, R59A, and R62A, in the context of the HCVcc system, showed that single, double, triple, and quadruple mutants were fully competent for viral RNA replication, but deficient in secretion of viral particles. Furthermore, we found that the extracellular and intracellular infectivity of all the mutants was abolished, suggesting a defect in the formation of infectious particles. Importantly, we showed that the interaction between the single and quadruple core mutants and NS5A was impaired in cells expressing full-length HCV genome. Interestingly, mutations of the four basic residues of core did not alter the association of core or NS5A with lipid droplets. This study showed for the first time that basic residues in the D1 domain of core that are critical for the formation of infectious extracellular and intracellular particles also play a role in core-NS5A interactions.
References
[1]
Moradpour D, Penin F, Rice CM (2007) Replication of hepatitis C virus. Nat Rev Microbiol 5: 453–463. doi: 10.1038/nrmicro1645
[2]
Levrero M (2006) Viral hepatitis and liver cancer: the case of hepatitis C. Oncogene. 25: 3834–3847. doi: 10.1038/sj.onc.1209562
[3]
Fusco DN, Chung RT (2012) Novel therapies for hepatitis C: insights from the structure of the virus. Annu Rev Med 63: 373–387. doi: 10.1146/annurev-med-042010-085715
[4]
Gane E (2011) Future hepatitis C virus treatment: interferon-sparing combinations. Liver Int 31 Suppl 162–67. doi: 10.1111/j.1478-3231.2010.02383.x
[5]
Rice CM (2011) New insights into HCV replication: potential antiviral targets. Top Antivir Med 19: 117–120.
[6]
Tellinghuisen TL, Evans MJ, von Hahn T, You S, Rice CM (2007) Studying hepatitis C virus: making the best of a bad virus. J Virol 81: 8853–8867. doi: 10.1128/jvi.00753-07
[7]
McMullan LK, Grakoui A, Evans MJ, Mihalik K, Puig M, et al. (2007) Evidence for a functional RNA element in the hepatitis C virus core gene. Proc Natl Acad Sci U S A 104: 2879–2884. doi: 10.1073/pnas.0611267104
[8]
Murray CL, Jones CT, Rice CM (2008) Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat Rev Microbiol 6: 699–708. doi: 10.1038/nrmicro1928
[9]
Murray CL, Rice CM (2011) Turning hepatitis C into a real virus. Annu Rev Microbiol 65: 307–327. doi: 10.1146/annurev-micro-090110-102954
[10]
Jones DM, McLauchlan J (2010) Hepatitis C virus: assembly and release of virus particles. J Biol Chem 285: 22733–22739. doi: 10.1074/jbc.r110.133017
[11]
Bartenschlager R, Penin F, Lohmann V, Andre P (2011) Assembly of infectious hepatitis C virus particles. Trends Microbiol 19: 95–103. doi: 10.1016/j.tim.2010.11.005
[12]
Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, et al. (2005) Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11: 791–796. doi: 10.1038/nm1268
[13]
Zhong J, Gastaminza P, Cheng G, Kapadia S, Kato T, et al. (2005) Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci U S A 102: 9294–9299. doi: 10.1073/pnas.0503596102
[14]
Khaliq S, Jahan S, Pervaiz A (2011) Sequence variability of HCV Core region: important predictors of HCV induced pathogenesis and viral production. Infect Genet Evol 11: 543–556. doi: 10.1016/j.meegid.2011.01.017
[15]
McLauchlan J (2000) Properties of the hepatitis C virus core protein: a structural protein that modulates cellular processes. J Viral Hepat 7: 2–14. doi: 10.1046/j.1365-2893.2000.00201.x
[16]
Kopp M, Murray CL, Jones CT, Rice CM (2010) Genetic analysis of the carboxy-terminal region of the hepatitis C virus core protein. J Virol 84: 1666–1673. doi: 10.1128/jvi.02043-09
[17]
Pene V, Hernandez C, Vauloup-Fellous C, Garaud-Aunis J, Rosenberg AR (2009) Sequential processing of hepatitis C virus core protein by host cell signal peptidase and signal peptide peptidase: a reassessment. J Viral Hepat 16: 705–715. doi: 10.1111/j.1365-2893.2009.01118.x
[18]
McLauchlan J, Lemberg MK, Hope G, Martoglio B (2002) Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO J 21: 3980–3988. doi: 10.1093/emboj/cdf414
[19]
Counihan NA, Rawlinson SM, Lindenbach BD (2011) Trafficking of hepatitis C virus core protein during virus particle assembly. PLoS Pathog 7: e1002302. doi: 10.1371/journal.ppat.1002302
[20]
Boulant S, Vanbelle C, Ebel C, Penin F, Lavergne JP (2005) Hepatitis C virus core protein is a dimeric alpha-helical protein exhibiting membrane protein features. J Virol 79: 11353–11365. doi: 10.1128/jvi.79.17.11353-11365.2005
[21]
Kushima Y, Wakita T, Hijikata M (2010) A disulfide-bonded dimer of the core protein of hepatitis C virus is important for virus-like particle production. J Virol 84: 9118–9127. doi: 10.1128/jvi.00402-10
[22]
Ivanyi-Nagy R, Kanevsky I, Gabus C, Lavergne JP, Ficheux D, et al. (2006) Analysis of hepatitis C virus RNA dimerization and core-RNA interactions. Nucleic Acids Res 34: 2618–2633. doi: 10.1093/nar/gkl240
[23]
Santolini E, Migliaccio G, La Monica N (1994) Biosynthesis and biochemical properties of the hepatitis C virus core protein. J Virol 68: 3631–3641.
[24]
Sharma K, Didier P, Darlix JL, de Rocquigny H, Bensikaddour H, et al. (2010) Kinetic analysis of the nucleic acid chaperone activity of the hepatitis C virus core protein. Nucleic Acids Res 38: 3632–3642. doi: 10.1093/nar/gkq094
[25]
Ai LS, Lee YW, Chen SS (2009) Characterization of hepatitis C virus core protein multimerization and membrane envelopment: revelation of a cascade of core-membrane interactions. J Virol 83: 9923–9939. doi: 10.1128/jvi.00066-09
[26]
Nakai K, Okamoto T, Kimura-Someya T, Ishii K, Lim CK, et al. (2006) Oligomerization of hepatitis C virus core protein is crucial for interaction with the cytoplasmic domain of E1 envelope protein. J Virol 80: 11265–11273. doi: 10.1128/jvi.01203-06
[27]
Klein KC, Dellos SR, Lingappa JR (2005) Identification of residues in the hepatitis C virus core protein that are critical for capsid assembly in a cell-free system. J Virol 79: 6814–6826. doi: 10.1128/jvi.79.11.6814-6826.2005
[28]
Boulant S, Montserret R, Hope RG, Ratinier M, Targett-Adams P, et al. (2006) Structural determinants that target the hepatitis C virus core protein to lipid droplets. J Biol Chem 281: 22236–22247. doi: 10.1074/jbc.m601031200
[29]
Herker E, Ott M (2011) Unique ties between hepatitis C virus replication and intracellular lipids. Trends Endocrinol Metab 22: 241–248. doi: 10.1016/j.tem.2011.03.004
[30]
Popescu CI, Dubuisson J (2010) Role of lipid metabolism in hepatitis C virus assembly and entry. Biol Cell 102: 63–74. doi: 10.1042/bc20090125
[31]
Suzuki T (2012) Morphogenesis of infectious hepatitis C virus particles. Front Microbiol 3: 38. doi: 10.3389/fmicb.2012.00038
[32]
Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, et al. (2007) The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9: 1089–1097. doi: 10.1038/ncb1631
[33]
Shavinskaya A, Boulant S, Penin F, McLauchlan J, Bartenschlager R (2007) The lipid droplet binding domain of hepatitis C virus core protein is a major determinant for efficient virus assembly. J Biol Chem 282: 37158–37169. doi: 10.1074/jbc.m707329200
[34]
Masaki T, Suzuki R, Murakami K, Aizaki H, Ishii K, et al. (2008) Interaction of hepatitis C virus nonstructural protein 5A with core protein is critical for the production of infectious virus particles. J Virol 82: 7964–7976. doi: 10.1128/jvi.00826-08
[35]
Hwang J, Huang L, Cordek DG, Vaughan R, Reynolds SL, et al. (2010) Hepatitis C virus nonstructural protein 5A: biochemical characterization of a novel structural class of RNA-binding proteins. J Virol 84: 12480–12491. doi: 10.1128/jvi.01319-10
[36]
Foster TL, Gallay P, Stonehouse NJ, Harris M (2011) Cyclophilin A interacts with domain II of hepatitis C virus NS5A and stimulates RNA binding in an isomerase-dependent manner. J Virol 85: 7460–7464. doi: 10.1128/jvi.00393-11
[37]
Lim PJ, Chatterji U, Cordek D, Sharma SD, Garcia-Rivera JA, et al. (2012) Correlation between NS5A dimerization and hepatitis C virus replication. J Biol Chem 287: 30861–30873. doi: 10.1074/jbc.m112.376822
[38]
Huang L, Hwang J, Sharma SD, Hargittai MR, Chen Y, et al. (2005) Hepatitis C virus nonstructural protein 5A (NS5A) is an RNA-binding protein. J Biol Chem 280: 36417–36428. doi: 10.1074/jbc.m508175200
[39]
Hughes M, Griffin S, Harris M (2009) Domain III of NS5A contributes to both RNA replication and assembly of hepatitis C virus particles. J Gen Virol 90: 1329–1334. doi: 10.1099/vir.0.009332-0
[40]
Tellinghuisen TL, Foss KL, Treadaway J (2008) Regulation of hepatitis C virion production via phosphorylation of the NS5A protein. PLoS Pathog 4: e1000032. doi: 10.1371/journal.ppat.1000032
[41]
Appel N, Zayas M, Miller S, Krijnse-Locker J, Schaller T, et al. (2008) Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLoS Pathog 4: e1000035. doi: 10.1371/journal.ppat.1000035
[42]
Kim S, Welsch C, Yi M, Lemon SM (2011) Regulation of the production of infectious genotype 1a hepatitis C virus by NS5A domain III. J Virol 85: 6645–6656. doi: 10.1128/jvi.02156-10
[43]
Gao M, Nettles RE, Belema M, Snyder LB, Nguyen VN, et al. (2010) Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature 465: 96–100. doi: 10.1038/nature08960
[44]
Guedj J, Dahari H, Rong L, Sansone ND, Nettles RE, et al. (2013) Modeling shows that the NS5A inhibitor daclatasvir has two modes of action and yields a shorter estimate of the hepatitis C virus half-life. Proc Natl Acad Sci U S A 110: 3991–3996. doi: 10.1073/pnas.1203110110
[45]
Phan T, Beran RK, Peters C, Lorenz IC, Lindenbach BD (2009) Hepatitis C virus NS2 protein contributes to virus particle assembly via opposing epistatic interactions with the E1-E2 glycoprotein and NS3-NS4A enzyme complexes. J Virol 83: 8379–8395. doi: 10.1128/jvi.00891-09
[46]
Stapleford KA, Lindenbach BD (2011) Hepatitis C virus NS2 coordinates virus particle assembly through physical interactions with the E1-E2 glycoprotein and NS3-NS4A enzyme complexes. J Virol 85: 1706–1717. doi: 10.1128/jvi.02268-10
[47]
Mousseau G, Kota S, Takahashi V, Frick DN, Strosberg AD (2011) Dimerization-driven interaction of hepatitis C virus core protein with NS3 helicase. J Gen Virol 92: 101–111. doi: 10.1099/vir.0.023325-0
[48]
Jones DM, Patel AH, Targett-Adams P, McLauchlan J (2009) The hepatitis C virus NS4B protein can trans-complement viral RNA replication and modulates production of infectious virus. J Virol 83: 2163–2177. doi: 10.1128/jvi.01885-08
[49]
Phan T, Kohlway A, Dimberu P, Pyle AM, Lindenbach BD (2011) The acidic domain of hepatitis C virus NS4A contributes to RNA replication and virus particle assembly. J Virol 85: 1193–1204. doi: 10.1128/jvi.01889-10
[50]
Popescu CI, Callens N, Trinel D, Roingeard P, Moradpour D, et al. (2011) NS2 protein of hepatitis C virus interacts with structural and non-structural proteins towards virus assembly. PLoS Pathog 7: e1001278. doi: 10.1371/journal.ppat.1001278
[51]
Han Q, Manna D, Belton K, Cole R, Konan KV (2013) Modulation of hepatitis C virus genome encapsidation by nonstructural 4B protein. J Virol.
[52]
Ploen D, Hafirassou ML, Himmelsbach K, Sauter D, Biniossek ML, et al. (2013) TIP47 plays a crucial role in the life cycle of hepatitis C virus. J Hepatol.
[53]
Camus G, Herker E, Modi AA, Haas JT, Ramage HR, et al. (2013) Diacylglycerol Acyltransferase-1 Localizes Hepatitis C Virus NS5A Protein to Lipid Droplets and Enhances NS5A Interaction with the Viral Capsid Core. J Biol Chem 288: 9915–9923. doi: 10.1074/jbc.m112.434910
[54]
Herker E, Harris C, Hernandez C, Carpentier A, Kaehlcke K, et al. (2010) Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nat Med 16: 1295–1298. doi: 10.1038/nm.2238
[55]
Chang KS, Jiang J, Cai Z, Luo G (2007) Human apolipoprotein e is required for infectivity and production of hepatitis C virus in cell culture. J Virol 81: 13783–13793. doi: 10.1128/jvi.01091-07
[56]
Merz A, Long G, Hiet MS, Brugger B, Chlanda P, et al. (2011) Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome. J Biol Chem 286: 3018–3032. doi: 10.1074/jbc.m110.175018
[57]
Jiang J, Luo G (2009) Apolipoprotein E but not B is required for the formation of infectious hepatitis C virus particles. J Virol 83: 12680–12691. doi: 10.1128/jvi.01476-09
[58]
Benga WJ, Krieger SE, Dimitrova M, Zeisel MB, Parnot M, et al. (2010) Apolipoprotein E interacts with hepatitis C virus nonstructural protein 5A and determines assembly of infectious particles. Hepatology 51: 43–53. doi: 10.1002/hep.23278
[59]
Date T, Miyamoto M, Kato T, Morikawa K, Murayama A, et al. (2007) An infectious and selectable full-length replicon system with hepatitis C virus JFH-1 strain. Hepatol Res 37: 433–443. doi: 10.1111/j.1872-034x.2007.00056.x
[60]
Huang L, Sineva EV, Hargittai MR, Sharma SD, Suthar M, et al. (2004) Purification and characterization of hepatitis C virus non-structural protein 5A expressed in Escherichia coli. Protein Expr Purif 37: 144–153. doi: 10.1016/j.pep.2004.05.005
[61]
Koutsoudakis G, Kaul A, Steinmann E, Kallis S, Lohmann V, et al. (2006) Characterization of the early steps of hepatitis C virus infection by using luciferase reporter viruses. J Virol 80: 5308–5320. doi: 10.1128/jvi.02460-05
[62]
Lohmann V, Korner F, Koch J, Herian U, Theilmann L, et al. (1999) Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285: 110–113. doi: 10.1126/science.285.5424.110
[63]
Vrolijk JM, Kaul A, Hansen BE, Lohmann V, Haagmans BL, et al. (2003) A replicon-based bioassay for the measurement of interferons in patients with chronic hepatitis C. J Virol Methods. 110: 201–209. doi: 10.1016/s0166-0934(03)00134-4
[64]
Chatterji U, Lim P, Bobardt MD, Wieland S, Cordek DG, et al. (2010) HCV resistance to cyclosporin A does not correlate with a resistance of the NS5A-cyclophilin A interaction to cyclophilin inhibitors. J Hepatol 53: 50–56. doi: 10.1016/j.jhep.2010.01.041
[65]
Lindenbach BD (2009) Measuring HCV infectivity produced in cell culture and in vivo. Methods Mol Biol 510: 329–336. doi: 10.1007/978-1-59745-394-3_24
[66]
Gastaminza P, Kapadia SB, Chisari FV (2006) Differential biophysical properties of infectious intracellular and secreted hepatitis C virus particles. J Virol 80: 11074–11081. doi: 10.1128/jvi.01150-06
[67]
Vogt DA, Camus G, Herker E, Webster BR, Tsou CL, et al. (2013) Lipid Droplet-Binding Protein TIP47 Regulates Hepatitis C Virus RNA Replication through Interaction with the Viral NS5A Protein. PLoS Pathog 9: e1003302. doi: 10.1371/journal.ppat.1003302
[68]
Alsaleh K, Delavalle PY, Pillez A, Duverlie G, Descamps V, et al. (2010) Identification of basic amino acids at the N-terminal end of the core protein that are crucial for hepatitis C virus infectivity. J Virol 84: 12515–12528. doi: 10.1128/jvi.01393-10
[69]
Weldon S, Ambroz K, Schutz-Geschwender A, Olive DM (2008) Near-infrared fluorescence detection permits accurate imaging of loading controls for Western blot analysis. Anal Biochem 375: 156–158. doi: 10.1016/j.ab.2007.11.035
[70]
Gastaminza P, Dryden KA, Boyd B, Wood MR, Law M, et al. (2010) Ultrastructural and biophysical characterization of hepatitis C virus particles produced in cell culture. J Virol 84: 10999–11009. doi: 10.1128/jvi.00526-10
[71]
Tellinghuisen TL, Marcotrigiano J, Rice CM (2005) Structure of the zinc-binding domain of an essential component of the hepatitis C virus replicase. Nature 435: 374–379. doi: 10.1038/nature03580
[72]
Lindenbach BD (2013) Virion assembly and release. Curr Top Microbiol Immunol 369: 199–218. doi: 10.1007/978-3-642-27340-7_8
[73]
Joyce MA, Tyrrell DL (2010) The cell biology of hepatitis C virus. Microbes Infect 12: 263–271. doi: 10.1016/j.micinf.2009.12.012
[74]
Murray CL, Jones CT, Tassello J, Rice CM (2007) Alanine scanning of the hepatitis C virus core protein reveals numerous residues essential for production of infectious virus. J Virol 81: 10220–10231. doi: 10.1128/jvi.00793-07
[75]
Angus AG, Loquet A, Stack SJ, Dalrymple D, Gatherer D, et al. (2012) Conserved glycine 33 residue in flexible domain I of hepatitis C virus core protein is critical for virus infectivity. J Virol 86: 679–690. doi: 10.1128/jvi.05452-11
[76]
Fromentin R, Majeau N, Laliberte Gagne ME, Boivin A, Duvignaud JB, et al. (2007) A method for in vitro assembly of hepatitis C virus core protein and for screening of inhibitors. Anal Biochem 366: 37–45. doi: 10.1016/j.ab.2007.03.033
[77]
Duvignaud JB, Savard C, Fromentin R, Majeau N, Leclerc D, et al. (2009) Structure and dynamics of the N-terminal half of hepatitis C virus core protein: an intrinsically unstructured protein. Biochem Biophys Res Commun 378: 27–31. doi: 10.1016/j.bbrc.2008.10.141
[78]
Ivanyi-Nagy R, Lavergne JP, Gabus C, Ficheux D, Darlix JL (2008) RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae. Nucleic Acids Res 36: 712–725. doi: 10.1093/nar/gkm1051
[79]
Bukh J, Purcell RH, Miller RH (1994) Sequence analysis of the core gene of 14 hepatitis C virus genotypes. Proc Natl Acad Sci U S A 91: 8239–8243. doi: 10.1073/pnas.91.17.8239