[1] | Sutton S, Braren M, Zubin J, John ER (1965) Evoked-Potential Correlates of Stimulus Uncertainty. Science 150: 1187–1188. doi: 10.1126/science.150.3700.1187
|
[2] | Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118: 2128–2148 doi: 10.1016/j.clinph.2007.04.019.
|
[3] | Ritter W, Vaughan HG (1969) Averaged evoked responses in vigilance and discrimination: a reassessment. Science 164: 326–328. doi: 10.1126/science.164.3877.326
|
[4] | Polich J (2004) Clinical application of the P300 event-related brain potential. Phys Med Rehabil Clin N Am 15: 133–161. doi: 10.1016/s1047-9651(03)00109-8
|
[5] | Polich J (1996) Meta-analysis of P300 normative aging studies. Psychophysiology 33: 334–353. doi: 10.1111/j.1469-8986.1996.tb01058.x
|
[6] | Patel SH, Azzam PN (2005) Characterization of N200 and P300: selected studies of the Event-Related Potential. Int J Med Sci 2: 147–154. doi: 10.7150/ijms.2.147
|
[7] | Squires NK, Squires KC, Hillyard SA (1975) Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr Clin Neurophysiol 38: 387–401. doi: 10.1016/0013-4694(75)90263-1
|
[8] | Snyder E, Hillyard SA (1976) Long-latency evoked potentials to irrelevant, deviant stimuli. Behav Biol 16: 319–331. doi: 10.1016/s0091-6773(76)91447-4
|
[9] | Courchesne E, Kilman BA, Galambos R, Lincoln AJ (1984) Autism: processing of novel auditory information assessed by event-related brain potentials. Electroencephalogr Clin Neurophysiol 59: 238–248. doi: 10.1016/0168-5597(84)90063-7
|
[10] | Duncan-Johnson CC, Kopell BS (1981) The Stroop effect: brain potentials localize the source of interference. Science 214: 938–940. doi: 10.1126/science.7302571
|
[11] | Verleger R (2010) Popper and P300: Can the view ever be falsified that P3 latency is a specific indicator of stimulus evaluation? Clin Neurophysiol 121: 1371–1372 doi: 10.1016/j.clinph.2010.01.038.
|
[12] | Verleger R (1997) On the utility of P3 latency as an index of mental chronometry. Psychophysiology 34: 131–156. doi: 10.1111/j.1469-8986.1997.tb02125.x
|
[13] | Donchin E (1981) Presidential address, 1980. Surprise!…Surprise? Psychophysiology 18: 493–513. doi: 10.1111/j.1469-8986.1981.tb01815.x
|
[14] | Niedermeyer E, Lopes da Silva F (1999) Electroencephalography: basic principles, clinical applications, and related fields. Baltimore: Williams & Wilkins.
|
[15] | Verleger R (1988) Event-related potentials and cognition: A critique of the context updating hypothesis and an alternative interpretation of P3. Behavioral and Brain Sciences 11: 343–356. doi: 10.1017/s0140525x00058015
|
[16] | Altenmüller EO, Gerloff G (1998) Psychophysiology and EEG, in: Niedermeyer E, Da Silva FHL (2004) Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins.
|
[17] | Walhovd KB, Fjell AM (2001) Two- and three-stimuli auditory oddball ERP tasks and neuropsychological measures in aging. Neuroreport 12: 3149–3153. doi: 10.1097/00001756-200110080-00033
|
[18] | Shajahan PM, O’Carroll RE, Glabus MF, Ebmeier KP, Blackwood DH (1997) Correlation of auditory ‘oddball’ P300 with verbal memory deficits in schizophrenia. Psychol Med 27: 579–586. doi: 10.1017/s0033291796004692
|
[19] | Fjell AM, Walhovd KB (2003) Effects of auditory stimulus intensity and hearing threshold on the relationship among P300, age, and cognitive function. Clin Neurophysiol 114: 799–807. doi: 10.1016/s1388-2457(03)00030-0
|
[20] | Sachs G, Anderer P, Margreiter N, Semlitsch H, Saletu B, et al. (2004) P300 event-related potentials and cognitive function in social phobia. Psychiatry Res 131: 249–261 doi: 10.1016/j.pscychresns.2004.05.005.
|
[21] | Polich J, Kok A (1995) Cognitive and biological determinants of P300: an integrative review. Biol Psychol 41: 103–146. doi: 10.1016/0301-0511(95)05130-9
|
[22] | Huster RJ, Westerhausen R, Herrmann CS (2011) Sex differences in cognitive control are associated with midcingulate and callosal morphology. Brain Struct Funct 215: 225–235 doi: –––10.1007/s00429–010–0289–2.
|
[23] | Frodl T, Meisenzahl EM, Müller D, Leinsinger G, Juckel G, et al. (2001) The effect of the skull on event-related P300. Clin Neurophysiol 112: 1773–1776. doi: 10.1016/s1388-2457(01)00587-9
|
[24] | Williams LM, Simms E, Clark CR, Paul RH, Rowe D, et al. (2005) The test-retest reliability of a standardized neurocognitive and neurophysiological test battery: “neuromarker”. Int J Neurosci 115: 1605–1630 doi: 10.1080/00207450590958475.
|
[25] | van Beijsterveldt CE, van Baal GC (2002) Twin and family studies of the human electroencephalogram: a review and a meta-analysis. Biol Psychol 61: 111–138. doi: 10.1016/s0301-0511(02)00055-8
|
[26] | Polich J, Ladish C, Burns T (1990) Normal variation of P300 in children: age, memory span, and head size. Int J Psychophysiol 9: 237–248. doi: 10.1016/0167-8760(90)90056-j
|
[27] | Sangal B, Sangal M, Belisle C (1998) P300 Latency and Age: A Quadratic Regression Explains Their Relationship from Age 5 to 85. Clin EEG Neurosci 29: 1–6 doi: 10.1177/155005949802900105.
|
[28] | Rozhkov VP, Sergeeva EG, Soroko SI (2009) Age dynamics of evoked brain potentials in involuntary and voluntary attention to a deviant stimulus in schoolchildren from the northern region. Neurosci Behav Physiol 39: 851–863 doi: ––10.1007/s11055–009–9210-y.
|
[29] | Tsai M-L, Hung K-L, Tao-Hsin Tung W, Chiang T-R (2012) Age-changed normative auditory event-related potential value in children in Taiwan. J Formos Med Assoc 111: 245–252 doi: 10.1016/j.jfma.2011.01.009.
|
[30] | Walhovd KB, Rosquist H, Fjell AM (2008) P300 amplitude age reductions are not caused by latency jitter. Psychophysiology 45: 545–553 doi: –10.1111/j.1469–8986.2008.00661.x.
|
[31] | Rossini PM, Rossi S, Babiloni C, Polich J (2007) Clinical neurophysiology of aging brain: from normal aging to neurodegeneration. Prog Neurobiol 83: 375–400 doi: 10.1016/j.pneurobio.2007.07.010.
|
[32] | Ashford JW, Coburn KL, Rose TL, Bayley PJ (2011) P300 energy loss in aging and Alzheimer’s disease. J Alzheimers Dis 26 Suppl 3229–238 doi: 10.3233/JAD-2011-0061.
|
[33] | Kuba M, Kremlá?ek J, Langrová J, Kubová Z, Szanyi J, et al. (2012) Aging effect in pattern, motion and cognitive visual evoked potentials. Vision Res 62C: 9–16 doi: 10.1016/j.visres.2012.03.014.
|
[34] | Ehlers CL, Wall TL, Garcia-Andrade C, Phillips E (2001) Auditory P3 findings in mission Indian youth. J Stud Alcohol 62: 562–570. doi: 10.1016/s0165-1781(01)00313-4
|
[35] | Beauchamp MS, Beurlot MR, Fava E, Nath AR, Parikh NA, et al. (2011) The developmental trajectory of brain-scalp distance from birth through childhood: implications for functional neuroimaging. PLoS One 6: e24981 doi: 10.1371/journal.pone.0024981.
|
[36] | Salthouse TA (2000) Aging and measures of processing speed. Biol Psychol 54: 35–54. doi: 10.1016/s0301-0511(00)00052-1
|
[37] | Turner RM, Bird SM, Higgins JP (2013) The impact of study size on meta-analyses: examination of underpowered studies in Cochrane reviews. PLoS One 8: e59202 doi: 10.1371/journal.pone.0059202.
|
[38] | Kraemer HC, Gardner C, Brooks III JO, Yesavage JA (1998) Advantages of excluding underpowered studies in meta-analysis: Inclusionist versus exclusionist viewpoints. Psychological Methods 3: 23–31. doi: 10.1037//1082-989x.3.1.23
|
[39] | Müller BW, Specka M, Steinchen N, Zerbin D, Lodemann E, et al. (2007) Auditory target processing in methadone substituted opiate addicts: the effect of nicotine in controls. BMC Psychiatry 7: 63 doi: 10.1186/1471-244X-7-63.
|
[40] | Paul RH, Gunstad J, Cooper N, Williams LM, Clark CR, et al. (2007) Cross-cultural assessment of neuropsychological performance and electrical brain function measures: additional validation of an international brain database. Int J Neurosci 117: 549–568 doi: 10.1080/00207450600773665.
|
[41] | Clark CR, Paul RH, Williams LM, Arns M, Fallahpour K, et al. (2006) Standardized assessment of cognitive functioning during development and aging using an automated touchscreen battery. Arch Clin Neuropsychol 21: 449–467 doi: 10.1016/j.acn.2006.06.005.
|
[42] | Arns M, Gunkelman J, Breteler M, Spronk D (2008) EEG phenotypes predict treatment outcome to stimulants in children with ADHD. J Integr Neurosci 7: 421–438. doi: 10.1142/s0219635208001897
|
[43] | Gratton G, Coles MG, Donchin E (1983) A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol 55: 468–484. doi: 10.1016/0013-4694(83)90135-9
|
[44] | Kirk RE (1996) Practical Significance: A Concept Whose Time Has Come. Educational and Psychological Measurement 56: 746–759 doi: 10.1177/0013164496056005002.
|
[45] | Cohen J (1992) A power primer. Psychol Bull 112: 155–159. doi: 10.1037//0033-2909.112.1.155
|
[46] | Salthouse TA (2010) Selective review of cognitive aging. J Int Neuropsychol Soc 16: 754–760 doi: 10.1017/S1355617710000706.
|
[47] | Brickman AM, Meier IB, Korgaonkar MS, Provenzano FA, Grieve SM, et al. (2012) Testing the white matter retrogenesis hypothesis of cognitive aging. Neurobiol Aging 33: 1699–1715 doi: 10.1016/j.neurobiolaging.2011.06.001.
|
[48] | Daffner KR, Chong H, Sun X, Tarbi EC, Riis JL, et al. (2011) Mechanisms underlying age- and performance-related differences in working memory. J Cogn Neurosci 23: 1298–1314 doi: 10.1162/jocn.2010.21540.
|
[49] | Salthouse TA (1996) The processing-speed theory of adult age differences in cognition. Psychol Rev 103: 403–428. doi: 10.1037//0033-295x.103.3.403
|
[50] | Davatzikos C, Resnick SM (2002) Degenerative age changes in white matter connectivity visualized in vivo using magnetic resonance imaging. Cereb Cortex 12: 767–771. doi: 10.1093/cercor/12.7.767
|
[51] | Reuter-Lorenz PA, Cappell KA (2008) Neurocognitive Aging and the Compensation Hypothesis. Current Directions in Psychological Science 17: 177–182 doi: –10.1111/j.1467–8721.2008.00570.x.
|
[52] | Schneider-Garces NJ, Gordon BA, Brumback-Peltz CR, Shin E, Lee Y, et al. (2010) Span, CRUNCH, and beyond: working memory capacity and the aging brain. J Cogn Neurosci 22: 655–669 doi: 10.1162/jocn.2009.21230.
|
[53] | Vermeij A, van Beek AH, Olde Rikkert MG, Claassen JA, Kessels RP (2012) Effects of aging on cerebral oxygenation during working-memory performance: a functional near-infrared spectroscopy study. PLoS One 7: e46210 doi: 10.1371/journal.pone.0046210.
|
[54] | Buckner RL (2004) Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44: 195–208 doi: 10.1016/j.neuron.2004.09.006.
|
[55] | Cabeza R, Anderson ND, Locantore JK, McIntosh AR (2002) Aging Gracefully: Compensatory Brain Activity in High-Performing Older Adults. Neuroimage 17: 1394–1402 doi: 10.1006/nimg.2002.1280.
|
[56] | Park DC, Reuter-Lorenz P (2009) The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol 60: 173–196 doi: 10.1146/annurev.psych.59.103006.093656.
|
[57] | Davis SW, Dennis NA, Daselaar SM, Fleck MS, Cabeza R (2008) Que PASA? The posterior-anterior shift in aging. Cereb Cortex 18: 1201–1209 doi: 10.1093/cercor/bhm155.
|
[58] | Friedman D, Kazmerski V, Fabiani M (1997) An overview of age-related changes in the scalp distribution of P3b. Electroencephalogr Clin Neurophysiol 104: 498–513. doi: 10.1016/s0168-5597(97)00036-1
|
[59] | West R, Schwarb H, Johnson BN (2010) The influence of age and individual differences in executive function on stimulus processing in the oddball task. Cortex 46: 550–563 doi: 10.1016/j.cortex.2009.08.001.
|
[60] | Li L, Gratton C, Fabiani M, Knight RT (2013) Age-related frontoparietal changes during the control of bottom-up and top-down attention: an ERP study. Neurobiol Aging 34: 477–488 doi: 10.1016/j.neurobiolaging.2012.02.025.
|
[61] | O’Connell RG, Balsters JH, Kilcullen SM, Campbell W, Bokde AW, et al. (2012) A simultaneous ERP/fMRI investigation of the P300 aging effect. Neurobiol Aging 33: 2448–2461 doi: 10.1016/j.neurobiolaging.2011.12.021.
|