全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

A GmRAV Ortholog Is Involved in Photoperiod and Sucrose Control of Flowering Time in Soybean

DOI: 10.1371/journal.pone.0089145

Full-Text   Cite this paper   Add to My Lib

Abstract:

Photoperiod and sucrose levels play a key role in the control of flowering. GmRAV reflected a diurnal rhythm with the highest expression at 4 h after the beginning of a dark period in soybean leaves, and was highly up-regulated under short-day (SD) conditions, despite of not following a diurnal pattern under long-day (LD) conditions. GmRAV-i (GmRAV-inhibition) transgenic soybean exhibited early flowering phenotype. Two of the FT Arabidopsis homologs, GmFT2a and GmFT5a, were highly expressed in the leaves of soybeans with inhibition (-i) of GmRAV under SD conditions. Moreover, the transcript levels of the two FT homologs in GmRAV-i soybeans were more sensitive to SD conditions than LD conditions compared to the WT plant. GmRAV-i soybeans and Arabidopsis rav mutants showed more sensitive hypocotyl elongation responses when compared with wild-type seedlings, and GmRAV-ox overevpressed in tobacco revealed no sensitive changes in hypocotyl length. These indicated that GmRAV was a novel negative regulator of SD-mediated flowering and hypocotyl elongation. Although sucrose has been suggested to promote flowering induction in many plant species, high concentration of sucrose (4% [w/v]) applied into media defer flowering time in Arabidopsis wild-type and rav mutant. This delayed flowering stage might be caused by reduction of LEAFY expression. Furthermore, Arabidopsis rav mutants and GmRAV-i soybean plants were less sensitive to sucrose by the inhibition assays of hypocotyls and roots growth. In contrast, transgenic GmRAV overexpressing (-ox) tobacco plants displayed more sensitivity to sucrose. In conclusion, GmRAV was inferred to have a fundamental function in photoperiod, darkness, and sucrose signaling responses to regulate plant development and flowering induction.

References

[1]  Coupland G (1995) Genetic and environmental control of flowering time in Arabidopsis. Trends Genet 11: 393–397. doi: 10.1016/s0168-9525(00)89122-2
[2]  Amasino RM (1996) Control of flowering time in plants. Curr Opin Genet Devel 6: 480–487. doi: 10.1016/s0959-437x(96)80071-2
[3]  Koornneef M, Alonso-Blanco C, Vries HB, Hanhart CJ, Peeters AJM (1998) Genetic interactions among late-flowering mutants of Arabidopsis. Genetics 148: 885–892.
[4]  Koornneef M, Alonso-Blanco C, Peeters AJM, Soppe W (1998) Genetic control of flowering time in Arabidopsis. Annu. Rev. Plant Physiol. Plant Mol Biol 49: 345–370. doi: 10.1146/annurev.arplant.49.1.345
[5]  Pi?eiro M, Coupland G (1998) The control of flowering time and floral identity in Arabidopsis. Plant Physiol 117: 1–8. doi: 10.1104/pp.117.1.1
[6]  Simpson GG, Dean C (2002) Arabidopsis, the Rosetta stone of flowering time. Science 296: 285–289. doi: 10.1126/science.296.5566.285
[7]  Zhang L, Wang R, Hesketh JD (2001) Effects of photoperiod on growth and development of soybean floral bud in different maturity. Agron J 63: 944–948. doi: 10.2134/agronj2001.934944x
[8]  Hadley P, Roberts EH, Summerfield RJ, Minchin FR (1984) Effects of temperature and photoperiod on flowering in soybean Glycine max (L.) Merrill.: a quantitative model. Ann Bot 53: 669–681.
[9]  Destro D, Carpentieri-Pípolo V, Kiihl RAS, Almeida LA (2001) Photoperiodism and Genetic Control of the Long Juvenile Period in Soybean: A Review. Crop Breed Appl Biotech 1: 72–79. doi: 10.13082/1984-7033.v01n01a10
[10]  Komeda Y (2004) Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol 55: 521–535. doi: 10.1146/annurev.arplant.55.031903.141644
[11]  Hiraoka K, Daimon Y, Araki T (2008) FT protein: a universal long distance mobile signal in seed plants? Plant Morphol 19: 3–13 (in Japanese with English abstract).. doi: 10.5685/plmorphol.19and20.3
[12]  Hiroyuki T, Shojiro T, Reina K, Shimamoto K (2008) Florigen and the Photoperiodic Control of Flowering in Rice. RICE 1: 25–35. doi: 10.1007/s12284-008-9005-8
[13]  Kong F, Liu B, Xia Z, Sato S, Kim BM, et al. (2010) Two coordinately regulated homologs of FLOWERINGLOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol 154: 1220–1231. doi: 10.1104/pp.110.160796
[14]  Sheen J (1994) Feedback control of gene expression. Photosynth Res 39: 427–438. doi: 10.1007/bf00014596
[15]  Dangl JL, Preuss D, Schroeder JL (1995) Talking through walls: signaling in plant development. Cell 83: 1071–1077. doi: 10.1016/0092-8674(95)90134-5
[16]  Sheen J, Zhou L, Jang JC (1999) Sugars as signaling molecules. Curr Opin Plant Biol 2: 410–418. doi: 10.1016/s1369-5266(99)00014-x
[17]  Rollard F, Windeerikx J, Thevelein JM (2001) Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem Sci 26: 310–317. doi: 10.1016/s0968-0004(01)01805-9
[18]  Sheen J (1990) Metabolic repression of transcription in higher plants. Plant Cell 2: 1027–1038. doi: 10.1105/tpc.2.10.1027
[19]  Chen M, Liu L, Chen Y, Wu H, Yu S (1994) Expression of alphamylases, carbohydrate metabolism, and autophagy in cultured rice cells is coordinately regulated by sugar nutrient. Plant J 6: 625–636. doi: 10.1046/j.1365-313x.1994.6050625.x
[20]  Bernier G, Havelange A, Houssa C, Petitjean A, Lejeune P (1993) Physiological signals that induce flowering. Plant Cell 5: 1147–1155. doi: 10.2307/3869768
[21]  Corbesier L, Lejeune P, Bernier G (1998) The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild-type and a starchless mutant. Planta 206: 131–137. doi: 10.1007/s004250050383
[22]  Rolda’n M, Go’mez-Mena C, Ruiz-Garc?’a L, Salinas J, Mart?’nez-Zapater JM (1999) Sucrose availability on the aerial part of the plant promotes dark-morphogenesis and flowering in Arabidopsis. Plant J 20: 581–590. doi: 10.1046/j.1365-313x.1999.00632.x
[23]  Zhou L, Jang JC, Jones TL, Sheen J (1998) Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc Natl Acad Sci USA 95: 10294–10299. doi: 10.1073/pnas.95.17.10294
[24]  Ohto M, Onai K, Furukawa Y, Aoki E, Araki T, et al. (2001) Effects of Sugar on Vegetative Development and Floral Transition in Arabidopsis. Plant Physiol 127: 252–261. doi: 10.1104/pp.127.1.252
[25]  King RW (2012) Mobile signals in daylength-regulated flowering: gibberellins, flowering locus T, and sucrose. Russ. J. Plant Physiol. 59: 479–490. doi: 10.1134/s1021443712040061
[26]  Rolland F, Moore B, Sheen J (2002) Plant sugar sensing and signaling. Plant Cell 14: S185–S205.
[27]  York WS, Darvill AG, Albersheim P (1984) Inhibition of 2, 4- dichlorophenoxyacetic acid-stimulated elongation of pea stem segments by a xyloglucan oligosaccharide. Plant Physiol 75: 295–297. doi: 10.1104/pp.75.2.295
[28]  Priem B, Gross KC (1992) Mannosyl- and xylosyl-containing glycans promote tomato (Lycopersicon esculentum Mill.) fruit ripening. Plant Physiol 98: 399–401. doi: 10.1104/pp.98.1.399
[29]  Shibuya N, Minami E (2001) Oligosaccharide signaling for defense responses in plants. Physiol Mol Plant Pathol 59: 223–233.
[30]  Stevenson CC, Harrington GN (2009) The impact of supplemental carbon sources on Arabidopsis thaliana growth, chlorophyll content and anthocyanin accumulation. Plant Growth Regul 59: 255–271. doi: 10.1007/s10725-009-9412-x
[31]  Zhao L, Luo Q, Yang C, Han Y, Li W (2008) A RAV-like transcription factor controls photosynthesis and senescence in soybean. Planta 227: 1389–1399. doi: 10.1007/s00425-008-0711-7
[32]  Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, et al. (2010) Genome sequence of the palaeopolyploid soybean. Nature 463: 178–183. doi: 10.1038/nature08670
[33]  Zhao L, Hao D, Chen L, Lu Q, Zhang Y, et al. (2012) Roles for a soybean RAV-like orthologue in shoot regeneration and photoperiodicity inferred from transgenic plants. J. Exp.Bot. 63: 3257–3270. doi: 10.1093/jxb/ers056
[34]  Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal 20: 3901–3907.
[35]  Castillejo C, Pelaz S (2008) The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering. Curr Biol 18: 1338–1343. doi: 10.1016/j.cub.2008.07.075
[36]  Moreno-Cortés A, Hernández-Verdeja T, Sánchez-Jiménez P, González-Melendi P, Aragoncillo C, et al. (2012) CsRAV1 induces sylleptic branching in hybrid poplar. New Phytologist 194: 83–90. doi: 10.1111/j.1469-8137.2011.04023.x
[37]  Osnato M, Castillejo C, Matías-Hernández L, Pelaz S (2012) TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis. Nature Commun. DOI: 10.1038/ncomms1810.
[38]  Amasino RM (2010) Seasonal and developmental timing of flowering. Plant J. 61: 1001–1013. doi: 10.1111/j.1365-313x.2010.04148.x
[39]  Huang H, Yan P, Lascoux M, Ge X (2012) Flowering time and transcriptome variation in Capsella bursa-pastoris (Brassicaceae). New Phytol 194: 676–689. doi: 10.1111/j.1469-8137.2012.04101.x
[40]  Heyer AG, Raap M, Schroeer B, Marty B, Willmitzer L (2004) Cell wall invertase expression at the apical meristem alters floral, architectural, and reproductive traits in Arabidopsis thaliana. Plant J. 39: 161–169. doi: 10.1111/j.1365-313x.2004.02124.x
[41]  Boxall SF, Gissot L, Graham IA (1997) Arabidopsis thaliana mutants that are carbohydrate insensitive. Plant Physiol 114: S247.
[42]  Rook F, Bevan MW (2003) Genetic approaches to understanding sugar-response pathways. J. Exp Bot 54: 495–501. doi: 10.1093/jxb/erg054
[43]  Mita S, Murano N, Akaike M, Nakamura K (1997) Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for beta-amylase and on the accumulation of anthocyanin that is inducible by sugars. Plant J. 11: 841–851. doi: 10.1046/j.1365-313x.1997.11040841.x
[44]  Martin T, Hellmann H, Schmidt R, Willmitzer L, Frommer WB (1997) Identification of mutants in metabolically regulated gene expression. Plant J. 11: 53–62. doi: 10.1046/j.1365-313x.1997.11010053.x
[45]  Laby RJ, Kincaid MS, Kim D, Gibson SI (2000) The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J. 23: 587–596. doi: 10.1046/j.1365-313x.2000.00833.x
[46]  Dijkwel PP, Huijser C, Weisbeek PJ, Chua NH, Smeekens SC (1997) Sucrose control of phytochrome a signaling in Arabidopsis. Plant Cell 9: 583–595. doi: 10.2307/3870509
[47]  Pego JV, Kortstee AJ, Huijser C, Smeekens SC (2000) Photosynthesis, sugars and the regulation of gene expression. J Exp Bot 51: 407–416. doi: 10.1093/jexbot/51.suppl_1.407

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133