全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Pheromone Diversification and Age-Dependent Behavioural Plasticity Decrease Interspecific Mating Costs in Nasonia

DOI: 10.1371/journal.pone.0089214

Full-Text   Cite this paper   Add to My Lib

Abstract:

Interspecific mating can cause severe fitness costs due to the fact that hybrids are often non-viable or less fit. Thus, theory predicts the selection of traits that lessen reproductive interactions between closely related sympatric species. Males of the parasitic wasp Nasonia vitripennis differ from all other Nasonia species by an additional sex pheromone component, but the ecological selective forces underlying this pheromone diversification are unknown. Here we present data from lab experiments suggesting that costly interspecific sexual interactions with the sympatric species N. giraulti might have been responsible for the pheromone evolution and some courtship-related behavioural adaptations in N. vitripennis. Most N. giraulti females are inseminated already within the host, but N. giraulti males still invest in costly sex pheromones after emergence. Furthermore, they do not discriminate between N. vitripennis females and conspecifics during courtship. Therefore, N. vitripennis females, most of which emerge as virgins, face the risk of mating with N. giraulti resulting in costly all-male broods due to Wolbachia-induced cytoplasmic incompatibility. As a counter adaptation, young N. vitripennis females discriminate against N. giraulti males using the more complex conspecific sex pheromone and reject most of them during courtship. With increasing age, however, N. vitripennis females become less choosy, but often compensate mating errors by re-mating with a conspecific. By doing so, they can principally avoid suboptimal offspring sex ratios, but a microcosm experiment suggests that under more natural conditions N. vitripennis females cannot completely avoid fitness costs due to heterospecific mating. Our study provides support for the hypothesis that communication interference of closely related sympatric species using similar sexual signals can generate selective pressures that lead to their divergence.

References

[1]  Groning J, Hochkirch A (2008) Reproductive interference between animal species. Quart Rev Biol 83: 257–282 doi:10.1086/590510.
[2]  Smadja C, Butlin RK (2009) On the scent of speciation: The chemosensory system and its role in premating isolation. Heredity 102: 77–97 doi:10.1038/hdy.2008.55.
[3]  Servedio MR, Noor MAF (2003) The role of reinforcement in speciation: Theory and data. Annu Rev Ecol Evol System 34: 339–364 doi:10.1146/annurev.ecolsys.34.011802.132412.
[4]  Wyatt, TD. (2003) Pheromones and Animal Behaviour. Communication by Smell and Taste. Cambridge: Cambridge University Press, 391 p.
[5]  El-Sayed AM (2013) The Pherobase: Database of Pheromones and Semiochemicals. Available: http://www.pherobase.com/. Accessed: 23 January 2014.
[6]  Raychoudhury R, Desjardins CA, Buellesbach J, Loehlin DW, Grillenberger BK, et al. (2010) Behavioral and genetic characteristics of a new species of Nasonia. Heredity 104: 278–288 doi:10.1038/hdy.2009.147.
[7]  Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, et al. (2010) Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327: 343–348 doi:10.1126/science.1178028.
[8]  Darling DC, Werren JH (1990) Biosystematics of Nasonia (Hymenoptera, Pteromalidae) - 2 new species reared from birds nests in North-America. Ann Entomol Soc Am 83: 352–370.
[9]  Buellesbach J, Gadau J, Beukeboom LW, Echinger F, Raychoudhury R, et al. (2013) Cuticular hydrocarbon divergence in the jewel wasp Nasonia: Evolutionary shifts in chemical communication channels? J Evol Biol 26: 2467–2478 doi:10.1111/jeb.12242.
[10]  Grillenberger BK, Koevoets T, Burton-Chellew MN, Sykes EM, Shuker DM, et al. (2008) Genetic structure of natural Nasonia vitripennis populations: Validating assumptions of sex-ratio theory. Mol Ecol 17: 2854–2864 doi:10.1111/j.1365-294X.2008.03800.x.
[11]  Hamilton WD (1967) Extraordinary sex ratios. Science 156: 477–488 doi:10.1126/science.156.3774.477.
[12]  Werren JH (1983) Sex-ratio evolution under local mate competition in a parasitic wasp. Evolution 37: 116–124 doi:10.2307/2408180.
[13]  Grillenberger BK, van de Zande L, Bijlsma R, Gadau J, Beukeboom LW (2009) Reproductive strategies under multiparasitism in natural populations of the parasitoid wasp Nasonia (Hymenoptera). J Evol Biol 22: 460–470 doi:10.1111/j.1420-9101.2008.01677.x.
[14]  Shuker DM, West SA (2004) Information constraints and the precision of adaptation: Sex ratio manipulation in wasps. Proc Natl Acad Sci USA 101: 10363–10367 doi:10.1073/pnas.030804101.
[15]  Breeuwer JAJ, Werren JH (1990) Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 346: 558–560 doi:10.1038/346558a0.
[16]  Ruther J, Stahl LM, Steiner S, Garble LA, Tolasch T (2007) A male sex pheromone in a parasitic wasp and control of the behavioral response by the female's mating status. J Exp Biol 210: 2163–2169 doi:10.1242/jeb.02789.
[17]  Ruther J, Steiner S, Garbe LA (2008) 4-methylquinazoline is a minor component of the male sex pheromone in Nasonia vitripennis. J Chem Ecol 34: 99–102 doi:10.1007/s10886-007-9411-1.
[18]  Niehuis O, Büllesbach J, Gibson JD, Pothmann D, Hanner C, et al. (2013) Behavioural and genetic analyses of Nasonia shed light on the evolution of sex pheromones. Nature 494: 345–348 doi:10.1038/nature11838.
[19]  Steiner S, Ruther J (2009) How important is sex for females of a haplodiploid species under local mate competition? Behav Ecol 20: 570–574 doi:10.1093/beheco/arp033.
[20]  Tanner ME (2002) Understanding nature's strategies for enzyme-catalyzed racemization and epimerization. Acc Chem Res 35: 237–246 doi:10.1021/ar000056y.
[21]  Steiner S, Hermann N, Ruther J (2006) Characterization of a female-produced courtship pheromone in the parasitoid Nasonia vitripennis. J Chem Ecol 32: 1687–1702 doi:10.1007/s10886-006-9102-3.
[22]  van den Assem J, Jachmann F, Simbolotti P (1980) Courtship behavior of Nasonia vitripennis (Hym., Pteromalidae): some qualitative, experimental evidence for the role of pheromones. Behaviour 75: 301–307 doi:10.1163/156853980X00456.
[23]  Ruther J, Thal K, Blaul B, Steiner S (2010) Behavioural switch in the sex pheromone response of Nasonia vitripennis females is linked to receptivity signalling. Animal Behaviour 80: 1035–1040 doi:10.1016/j.anbehav.2010.09.008.
[24]  Bordenstein SR, Drapeau MD, Werren JH (2000) Intraspecific variation in sexual isolation in the jewel wasp Nasonia. Evolution 54: 567–573 doi:10.1111/j.0014-3820.2000.tb00059.x.
[25]  Bordenstein SR, Werren JH (1998) Effects of A and B Wolbachia and host genotype on interspecies cytoplasmic incompatibility in Nasonia. Genetics 148: 1833–1844.
[26]  Drapeau MD, Werren JH (1999) Differences in mating behaviour and sex ratio between three sibling species of Nasonia. Evol Ecol Res 1: 223–234.
[27]  Blaul B, Ruther J (2011) How parasitoid females produce sexy sons: a causal link between oviposition preference, dietary lipids and mate choice in Nasonia. Proc R Soc Lond B 278: 3286–3293 doi:10.1098/rspb.2011.0001.
[28]  King B (1993) Flight activity in the parasitoid wasp Nasonia vitripennis (Hymenoptera: Pteromalidae). J Ins Behav 6: 313–321 doi:10.1007/BF01048112.
[29]  King BH, Grimm KM, Reno HE (2000) Effects of mating on female locomotor activity in the parasitoid wasp Nasonia vitripennis (Hymenoptera : Pteromalidae). Environ Entomol 29: 927–933 doi:10.1603/0046-225X-29.5.927.
[30]  Ruther J, Matschke M, Garbe LA, Steiner S (2009) Quantity matters: Male sex pheromone signals mate quality in the parasitic wasp Nasonia vitripennis. Proc R Soc Lond B 276: 3303–3310 doi:10.1098/rspb.2009.0738.
[31]  Ruther J (2013) Novel insights into pheromone-mediated communication in parasitic hymenopterans. In: Wajnberg E, Colazza S, editors. Chemical Ecology of Insect Parasitoids. Chichester: Wiley. 112–144.
[32]  Werren JH (1980) Sex ratio adaptations to local mate competition in a parasitic wasp. Science 208: 1157–1159 doi:10.1126/science.208.4448.1157.
[33]  Burton-Chellew MN, Koevoets T, Grillenberger BK, Sykes EM, Underwood SL, et al. (2008) Facultative sex ratio adjustment in natural populations of wasps: Cues of local mate competition and the precision of adaptation. Am Nat 172: 393–404 doi:10.1086/589895.
[34]  Wathes DC, Abayasekara DRE, Aitken RJ (2007) Polyunsaturated fatty acids in male and female reproduction. Biol Reprod 77: 190–201 doi:10.1095/biolreprod.107.060558.
[35]  Moore PJ, Moore AJ (2001) Reproductive aging and mating: the ticking of the biological clock in female cockroaches. Proc Natl Acad Sci USA 98: 9171–9176 doi:10.1073/pnas.161154598.
[36]  Tinghitella RM, Weigel EG, Head M, Boughman JW (2013) Flexible mate choice when mates are rare and time is short. Ecol Evol 3: 2820–2831 doi:10.1002/ece3.666.
[37]  Mautz BS, Sakaluk SK (2008) The effects of age and previous mating experience on pre- and post-copulatory mate choice in female house crickets (Acheta domesticus L.). J Ins Behav 21: 203–212 doi:10.1007/s10905-008-9120-9.
[38]  Klein AL, Trillo MC, Albo MJ (2012) Sexual receptivity varies according to female age in a Neotropical nuptial gift-giving spider. J Arachnol 40: 138–140. doi: 10.1636/h11-31.1
[39]  van den Assem J, Gijswijt MJ, Nübel BK (1980) Observations on courtship strategies and mating strategies in a few species of parasitic wasps (Chalcidoidea). Neth J Zool 30: 208–227. doi: 10.1163/002829679x00386
[40]  Butlin R (1987) Speciation by reinforcement. Trends Ecol Evol 2: 8–13 doi:10.1016/0169-5347(87)90193-5.
[41]  Marshall JL, Arnold ML, Howard DJ (2002) Reinforcement: The road not taken. Trends Ecol Evol 17: 558–563 doi:10.1016/S0169-5347(02)02636-8.
[42]  Raychoudhury R, Grillenberger BK, Gadau J, Bijlsma R, van de Zande L, et al. (2010) Phylogeography of Nasonia vitripennis (Hymenoptera) indicates a mitochondrial-Wolbachia sweep in North America. Heredity 104: 318–326 doi:10.1038/hdy.2009.160.
[43]  Steiger S, Schmitt T, Schaefer HM (2010) The origin and dynamic evolution of chemical information transfer. Proc R Soc Lond B 278: 970–979 doi:10.1098/rspb.2010.2285.
[44]  van der Zande L, Ferber S, de Haan A, Beukeboom L, van Heerwaarden J, et al.. (2013) Development of a Nasonia vitripennis outbred laboratory population for genetic analysis. Mol Ecol Resour 11: (in press). doi: 10.1111/1755-0998.12201.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133