全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Visualization of Extracellular Matrix Components within Sectioned Salmonella Biofilms on the Surface of Human Gallstones

DOI: 10.1371/journal.pone.0089243

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chronic carriage of Salmonella Typhi is mediated primarily through the formation of bacterial biofilms on the surface of cholesterol gallstones. Biofilms, by definition, involve the formation of a bacterial community encased within a protective macromolecular matrix. Previous work has demonstrated the composition of the biofilm matrix to be complex and highly variable in response to altered environmental conditions. Although known to play an important role in bacterial persistence in a variety of contexts, the Salmonella biofilm matrix remains largely uncharacterized under physiological conditions. Initial attempts to study matrix components and architecture of the biofilm matrix on gallstone surfaces were hindered by the auto-fluorescence of cholesterol. In this work we describe a method for sectioning and direct visualization of extracellular matrix components of the Salmonella biofilm on the surface of human cholesterol gallstones and provide a description of the major matrix components observed therein. Confocal micrographs revealed robust biofilm formation, characterized by abundant but highly heterogeneous expression of polysaccharides such as LPS, Vi and O-antigen capsule. CsgA was not observed in the biofilm matrix and flagellar expression was tightly restricted to the biofilm-cholesterol interface. Images also revealed the presence of preexisting Enterobacteriaceae encased within the structure of the gallstone. These results demonstrate the use and feasibility of this method while highlighting the importance of studying the native architecture of the gallstone biofilm. A better understanding of the contribution of individual matrix components to the overall biofilm structure will facilitate the development of more effective and specific methods to disrupt these bacterial communities.

References

[1]  Crump JA, Luby SP, Mintz ED (2004) The global burden of typhoid fever. Bull World Health Organ 82: 346–353.
[2]  Bhutta ZA, Threlfall J (2009) Addressing the global disease burden of typhoid fever. JAMA 302: 898–899. doi: 10.1001/jama.2009.1259
[3]  Giannella R (2010) Infectious enteritis and proctocolitis and bacterial food poisoning. In: Feldman M FL, Brandt LJ, editor.Sleisenger and FORTRAN's Gastrointestinal and Liver Disease. 9th ed. ed. Philadelphia, Pa: Saunders Elsevier.
[4]  Levine MM, Black RE, Lanata C (1982) Precise estimation of the numbers of chronic carriers of Salmonella typhi in Santiago, Chile, an endemic area. J Infect Dis 146: 724–726. doi: 10.1093/infdis/146.6.724
[5]  Merselis JG Jr, Kaye D, Connolly CS, Hook EW (1964) Quantitative Bacteriology of the Typhoid Carrier State. Am J Trop Med Hyg 13: 425–429.
[6]  Gonzalez-Escobedo G, Marshall JM, Gunn JS (2011) Chronic and acute infection of the gall bladder by Salmonella Typhi: understanding the carrier state. Nat Rev Microbiol 9: 9–14. doi: 10.1038/nrmicro2490
[7]  Crawford RW, Rosales-Reyes R, Ramirez-Aguilar Mde L, Chapa-Azuela O, Alpuche-Aranda C, et al. (2010) Gallstones play a significant role in Salmonella spp. gallbladder colonization and carriage. Proc Natl Acad Sci U S A 107: 4353–4358. doi: 10.1073/pnas.1000862107
[8]  Ristori C, Rodriguez H, Vicent P, Ferreccio C, Garcia J, et al. (1982) Persistence of the Salmonella typhi-paratyphi carrier state after gallbladder removal. Bull Pan Am Health Organ 16: 361–366.
[9]  Lai CW, Chan RC, Cheng AF, Sung JY, Leung JW (1992) Common bile duct stones: a cause of chronic salmonellosis. Am J Gastroenterol 87: 1198–1199.
[10]  Sutherland I (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147: 3–9.
[11]  Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8: 623–633. doi: 10.1038/nrmicro2415
[12]  Monds RD, O'Toole GA (2009) The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 17: 73–87. doi: 10.1016/j.tim.2008.11.001
[13]  Hall-Stoodley L, Nistico L, Sambanthamoorthy K, Dice B, Nguyen D, et al. (2008) Characterization of biofilm matrix, degradation by DNase treatment and evidence of capsule downregulation in Streptococcus pneumoniae clinical isolates. BMC Microbiol 8: 173. doi: 10.1186/1471-2180-8-173
[14]  Andersson EK, Chapman M (2013) Small molecule disruption of B. subtilis biofilms by targeting the amyloid matrix. Chem Biol 20: 5–7. doi: 10.1016/j.chembiol.2013.01.004
[15]  Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A 104: 11197–11202. doi: 10.1073/pnas.0704624104
[16]  Brandstetter KA, Jurcisek JA, Goodman SD, Bakaletz LO, Das S (2013) Antibodies directed against integration host factor mediate biofilm clearance from nasopore. Laryngoscope.
[17]  Speranza B, Corbo MR, Sinigaglia M (2011) Effects of nutritional and environmental conditions on Salmonella sp. biofilm formation. J Food Sci 76: M12–16. doi: 10.1111/j.1750-3841.2010.01936.x
[18]  Barak JD, Jahn CE, Gibson DL, Charkowski AO (2007) The role of cellulose and O-antigen capsule in the colonization of plants by Salmonella enterica. Mol Plant Microbe Interact 20: 1083–1091. doi: 10.1094/mpmi-20-9-1083
[19]  Prouty AM, Gunn JS (2003) Comparative analysis of Salmonella enterica serovar Typhimurium biofilm formation on gallstones and on glass. Infect Immun 71: 7154–7158. doi: 10.1128/iai.71.12.7154-7158.2003
[20]  Crawford RW, Reeve KE, Gunn JS (2010) Flagellated but not hyperfimbriated Salmonella enterica serovar Typhimurium attaches to and forms biofilms on cholesterol-coated surfaces. J Bacteriol 192: 2981–2990. doi: 10.1128/jb.01620-09
[21]  Latasa C, Roux A, Toledo-Arana A, Ghigo JM, Gamazo C, et al. (2005) BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis. Mol Microbiol 58: 1322–1339. doi: 10.1111/j.1365-2958.2005.04907.x
[22]  Jonas K, Tomenius H, Kader A, Normark S, Romling U, et al. (2007) Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy. BMC Microbiol 7: 70. doi: 10.1186/1471-2180-7-70
[23]  Ledeboer NA, Jones BD (2005) Exopolysaccharide sugars contribute to biofilm formation by Salmonella enterica serovar typhimurium on HEp-2 cells and chicken intestinal epithelium. J Bacteriol 187: 3214–3226. doi: 10.1128/jb.187.9.3214-3226.2005
[24]  Solano C, Garcia B, Valle J, Berasain C, Ghigo JM, et al. (2002) Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 43: 793–808. doi: 10.1046/j.1365-2958.2002.02802.x
[25]  White AP, Gibson DL, Collinson SK, Banser PA, Kay WW (2003) Extracellular polysaccharides associated with thin aggregative fimbriae of Salmonella enterica serovar enteritidis. J Bacteriol 185: 5398–5407. doi: 10.1128/jb.185.18.5398-5407.2003
[26]  Crawford RW, Gibson DL, Kay WW, Gunn JS (2008) Identification of a bile-induced exopolysaccharide required for Salmonella biofilm formation on gallstone surfaces. Infect Immun 76: 5341–5349. doi: 10.1128/iai.00786-08
[27]  Gibson DL, White AP, Snyder SD, Martin S, Heiss C, et al. (2006) Salmonella produces an O-antigen capsule regulated by AgfD and important for environmental persistence. J Bacteriol 188: 7722–7730. doi: 10.1128/jb.00809-06
[28]  Prouty AM, Schwesinger WH, Gunn JS (2002) Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect Immun 70: 2640–2649. doi: 10.1128/iai.70.5.2640-2649.2002
[29]  Villarreal JV, Jungfer C, Obst U, Schwartz T (2013) DNase I and Proteinase K eliminate DNA from injured or dead bacteria but not from living bacteria in microbial reference systems and natural drinking water biofilms for subsequent molecular biology analyses. J Microbiol Methods 94: 161–169. doi: 10.1016/j.mimet.2013.06.009
[30]  Gerstel U, Romling U (2003) The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium. Res Microbiol 154: 659–667. doi: 10.1016/j.resmic.2003.08.005
[31]  Romling U, Sierralta WD, Eriksson K, Normark S (1998) Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol Microbiol 28: 249–264. doi: 10.1046/j.1365-2958.1998.00791.x
[32]  Zogaj X, Nimtz M, Rohde M, Bokranz W, Romling U (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39: 1452–1463. doi: 10.1046/j.1365-2958.2001.02337.x
[33]  Prouty AM, Van Velkinburgh JC, Gunn JS (2002) Salmonella enterica serovar typhimurium resistance to bile: identification and characterization of the tolQRA cluster. J Bacteriol 184: 1270–1276. doi: 10.1128/jb.184.5.1270-1276.2002
[34]  Prouty AM, Brodsky IE, Manos J, Belas R, Falkow S, et al. (2004) Transcriptional regulation of Salmonella enterica serovar Typhimurium genes by bile. FEMS Immunol Med Microbiol 41: 177–185. doi: 10.1016/j.femsim.2004.03.002
[35]  Speer AG, Cotton PB, Rode J, Seddon AM, Neal CR, et al. (1988) Biliary stent blockage with bacterial biofilm. A light and electron microscopy study. Ann Intern Med 108: 546–553. doi: 10.7326/0003-4819-108-4-546
[36]  Stewart L, Oesterle AL, Erdan I, Griffiss JM, Way LW (2002) Pathogenesis of pigment gallstones in Western societies: the central role of bacteria. J Gastrointest Surg 6: 891–903 discussion 903–894.
[37]  Kim IS, Myung SJ, Lee SS, Lee SK, Kim MH (2003) Classification and nomenclature of gallstones revisited. Yonsei Med J 44: 561–570.
[38]  Diehl AK, Schwesinger WH, Holleman DR Jr, Chapman JB, Kurtin WE (1995) Clinical correlates of gallstone composition: distinguishing pigment from cholesterol stones. Am J Gastroenterol 90: 967–972.
[39]  Qiao T, Ma RH, Luo XB, Luo ZL, Zheng PM, et al. (2013) A microstructural study of gallbladder stones using scanning electron microscopy. Microsc Res Tech 76: 443–452. doi: 10.1002/jemt.22185
[40]  Kaufman HS, Magnuson TH, Lillemoe KD, Frasca P, Pitt HA (1989) The role of bacteria in gallbladder and common duct stone formation. Ann Surg 209: 584–591 discussion 591–582. doi: 10.1097/00000658-198905000-00011
[41]  Dolgin SM, Schwartz JS, Kressel HY, Soloway RD, Miller WT, et al. (1981) Identification of patients with cholesterol or pigment gallstones by discriminant analysis of radiographic features. N Engl J Med 304: 808–811. doi: 10.1056/nejm198104023041402
[42]  Cetta F, Lombardo F, Giubbolini M, Baldi C, Cariati A (1995) Classification of gallstones and epidemiologic studies. Dig Dis Sci 40: 2189–2191. doi: 10.1007/bf02209004
[43]  Kurtin WE, Schwesinger WH, Diehl AK (2000) Age-related changes in the chemical composition of gallstones. Int J Surg Investig 2: 299–307.
[44]  Schafmayer C, Hartleb J, Tepel J, Albers S, Freitag S, et al. (2006) Predictors of gallstone composition in 1025 symptomatic gallstones from Northern Germany. BMC Gastroenterol 6: 36.
[45]  Maurer KJ, Carey MC, Fox JG (2009) Roles of infection, inflammation, and the immune system in cholesterol gallstone formation. Gastroenterology 136: 425–440. doi: 10.1053/j.gastro.2008.12.031
[46]  Venneman NG, van Erpecum KJ (2010) Pathogenesis of gallstones. Gastroenterol Clin North Am 39: 171–183 vii.. doi: 10.1016/j.gtc.2010.02.010
[47]  Kawai M, Iwahashi M, Uchiyama K, Ochiai M, Tanimura H, et al. (2002) Gram-positive cocci are associated with the formation of completely pure cholesterol stones. Am J Gastroenterol 97: 83–88.
[48]  Maurer KJ, Ihrig MM, Rogers AB, Ng V, Bouchard G, et al. (2005) Identification of cholelithogenic enterohepatic helicobacter species and their role in murine cholesterol gallstone formation. Gastroenterology 128: 1023–1033. doi: 10.1053/j.gastro.2005.01.008
[49]  Lambou-Gianoukos S, Heller SJ (2008) Lithogenesis and bile metabolism. Surg Clin North Am 88: 1175–1194 vii.. doi: 10.1016/j.suc.2008.07.009
[50]  Stewart L, Griffiss JM, Jarvis GA, Way LW (2007) Gallstones containing bacteria are biofilms: bacterial slime production and ability to form pigment solids determines infection severity and bacteremia. J Gastrointest Surg 11: 977–983 discussion 983–974. doi: 10.1007/s11605-007-0168-1
[51]  Swidsinski A, Ludwig W, Pahlig H, Priem F (1995) Molecular genetic evidence of bacterial colonization of cholesterol gallstones. Gastroenterology 108: 860–864. doi: 10.1016/0016-5085(95)90461-1
[52]  Stewart L, Smith AL, Pellegrini CA, Motson RW, Way LW (1987) Pigment gallstones form as a composite of bacterial microcolonies and pigment solids. Ann Surg 206: 242–250. doi: 10.1097/00000658-198709000-00002
[53]  Csendes A, Burdiles P, Maluenda F, Diaz JC, Csendes P, et al. (1996) Simultaneous bacteriologic assessment of bile from gallbladder and common bile duct in control subjects and patients with gallstones and common duct stones. Arch Surg 131: 389–394. doi: 10.1001/archsurg.1996.01430160047008
[54]  Buchwald DS, Blaser MJ (1984) A review of human salmonellosis: II. Duration of excretion following infection with nontyphi Salmonella. Rev Infect Dis 6: 345–356. doi: 10.1093/clinids/6.3.345
[55]  Morosini MI, Valverde A, Garcia-Castillo M, Nordmann P, Canton R (2010) Persistent isolation of Salmonella Concord harbouring CTX-M-15, SHV-12 and QnrA1 in an asymptomatic adopted Ethiopian child in Spain also colonized with CTX-M-14- and QnrB-producing Enterobacteriaceae. J Antimicrob Chemother 65: 1545–1546. doi: 10.1093/jac/dkq168
[56]  Vanhoof R, Gillis P, Stevart O, Boland C, Vandenberg O, et al. (2012) Transmission of multiple resistant Salmonella Concord from internationally adopted children to their adoptive families and social environment: proposition of guidelines. Eur J Clin Microbiol Infect Dis 31: 491–497. doi: 10.1007/s10096-011-1336-5
[57]  Parry CM, Thomas S, Aspinall EJ, Cooke RP, Rogerson SJ, et al. (2013) A retrospective study of secondary bacteraemia in hospitalised adults with community acquired non-typhoidal Salmonella gastroenteritis. BMC Infect Dis 13: 107. doi: 10.1186/1471-2334-13-107
[58]  Romling U, Bian Z, Hammar M, Sierralta WD, Normark S (1998) Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 180: 722–731.
[59]  Raffatellu M, Chessa D, Wilson RP, Dusold R, Rubino S, et al. (2005) The Vi capsular antigen of Salmonella enterica serotype Typhi reduces Toll-like receptor-dependent interleukin-8 expression in the intestinal mucosa. Infect Immun 73: 3367–3374. doi: 10.1128/iai.73.6.3367-3374.2005
[60]  Wang S, Parsek MR, Wozniak DJ, Ma LZ (2013) A spider web strategy of type IV pili-mediated migration to build a fibre-like Psl polysaccharide matrix in Pseudomonas aeruginosa biofilms. Environ Microbiol 15: 2238–2253. doi: 10.1111/1462-2920.12095
[61]  Hazrah P, Oahn KT, Tewari M, Pandey AK, Kumar K, et al. (2004) The frequency of live bacteria in gallstones. HPB (Oxford) 6: 28–32. doi: 10.1080/13651820310025192
[62]  Leung JW, Sung JY, Costerton JW (1989) Bacteriological and electron microscopy examination of brown pigment stones. J Clin Microbiol 27: 915–921.
[63]  Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, et al. (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295: 851–855. doi: 10.1126/science.1067484

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133