全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Filamin B Regulates Chondrocyte Proliferation and Differentiation through Cdk1 Signaling

DOI: 10.1371/journal.pone.0089352

Full-Text   Cite this paper   Add to My Lib

Abstract:

Humans who harbor loss of function mutations in the actin-associated filamin B (FLNB) gene develop spondylocarpotarsal syndrome (SCT), a disorder characterized by dwarfism (delayed bone formation) and premature fusion of the vertebral, carpal and tarsal bones (premature differentiation). To better understand the cellular and molecular mechanisms governing these seemingly divergent processes, we generated and characterized FlnB knockdown ATDC5 cell lines. We found that FlnB knockdown led to reduced proliferation and enhanced differentiation in chondrocytes. Within the shortened growth plate of postnatal FlnB?/? mice long bone, we observed a similarly progressive decline in the number of rapidly proliferating chondrocytes and premature differentiation characterized by an enlarged prehypertrophic zone, a widened Col2a1+/Col10a1+ overlapping region, but relatively reduced hypertrophic zone length. The reduced chondrocyte proliferation and premature differentiation were, in part, attributable to enhanced G2/M phase progression, where fewer FlnB deficient ATDC5 chondrocytes resided in the G2/M phase of the cell cycle. FlnB loss reduced Cdk1 phosphorylation (an inhibitor of G2/M phase progression) and Cdk1 inhibition in chondrocytes mimicked the null FlnB, premature differentiation phenotype, through a β1-integrin receptor- Pi3k/Akt (a key regulator of chondrocyte differentiation) mediated pathway. In this context, the early prehypertrophic differentiation provides an explanation for the premature differentiation seen in this disorder, whereas the progressive decline in proliferating chondrocytes would ultimately lead to reduced chondrocyte production and shortened bone length. These findings begin to define a role for filamin proteins in directing both cell proliferation and differentiation through indirect regulation of cell cycle associated proteins.

References

[1]  Bicknell LS, Farrington-Rock C, Shafeghati Y, Rump P, Alanay Y, et al. (2007) A molecular and clinical study of Larsen syndrome caused by mutations in FLNB. J Med Genet 44: 89–98. doi: 10.1136/jmg.2006.043687
[2]  Bicknell LS, Morgan T, Bonafe L, Wessels MW, Bialer MG, et al. (2005) Mutations in FLNB cause boomerang dysplasia. J Med Genet 42: e43. doi: 10.1136/jmg.2004.029967
[3]  Farrington-Rock C, Firestein MH, Bicknell LS, Superti-Furga A, Bacino CA, et al. (2006) Mutations in two regions of FLNB result in atelosteogenesis I and III. Hum Mutat 27: 705–710. doi: 10.1002/humu.20348
[4]  Krakow D, Robertson SP, King LM, Morgan T, Sebald ET, et al. (2004) Mutations in the gene encoding filamin B disrupt vertebral segmentation, joint formation and skeletogenesis. Nat Genet 36: 405–410. doi: 10.1038/ng1319
[5]  Farrington-Rock C, Kirilova V, Dillard-Telm L, Borowsky AD, Chalk S, et al. (2008) Disruption of the Flnb gene in mice phenocopies the human disease spondylocarpotarsal synostosis syndrome. Hum Mol Genet 17: 631–641. doi: 10.1093/hmg/ddm188
[6]  Lu J, Lian G, Lenkinski R, De Grand A, Vaid RR, et al. (2007) Filamin B mutations cause chondrocyte defects in skeletal development. Hum Mol Genet 16: 1661–1675. doi: 10.1093/hmg/ddm114
[7]  Zheng L, Baek HJ, Karsenty G, Justice MJ (2007) Filamin B represses chondrocyte hypertrophy in a Runx2/Smad3-dependent manner. J Cell Biol 178: 121–128. doi: 10.1083/jcb.200703113
[8]  Zhou X, Tian F, Sandzen J, Cao R, Flaberg E, et al. (2007) Filamin B deficiency in mice results in skeletal malformations and impaired microvascular development. Proc Natl Acad Sci U S A 104: 3919–3924. doi: 10.1073/pnas.0608360104
[9]  Leise W 3rd, Mueller PR (2002) Multiple Cdk1 inhibitory kinases regulate the cell cycle during development. Developmental biology 249: 156–173. doi: 10.1006/dbio.2002.0743
[10]  Murray AW, Kirschner MW (1989) Cyclin synthesis drives the early embryonic cell cycle. Nature 339: 275–280. doi: 10.1038/339275a0
[11]  James CG, Appleton CT, Ulici V, Underhill TM, Beier F (2005) Microarray analyses of gene expression during chondrocyte differentiation identifies novel regulators of hypertrophy. Mol Biol Cell 16: 5316–5333. doi: 10.1091/mbc.e05-01-0084
[12]  Lian G, Lu J, Hu J, Zhang J, Cross SH, et al. (2012) Filamin a regulates neural progenitor proliferation and cortical size through Wee1-dependent Cdk1 phosphorylation. J Neurosci 32: 7672–7684. doi: 10.1523/jneurosci.0894-12.2012
[13]  Berdnik D, Knoblich JA (2002) Drosophila Aurora-A is required for centrosome maturation and actin-dependent asymmetric protein localization during mitosis. Curr Biol 12: 640–647. doi: 10.1016/s0960-9822(02)00766-2
[14]  Reichert H (2011) Drosophila neural stem cells: cell cycle control of self-renewal, differentiation, and termination in brain development. Results Probl Cell Differ 53: 529–546. doi: 10.1007/978-3-642-19065-0_21
[15]  Meech R, Edelman DB, Jones FS, Makarenkova HP (2005) The homeobox transcription factor Barx2 regulates chondrogenesis during limb development. Development 132: 2135–2146. doi: 10.1242/dev.01811
[16]  Bi W, Huang W, Whitworth DJ, Deng JM, Zhang Z, et al. (2001) Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proc Natl Acad Sci U S A 98: 6698–6703. doi: 10.1073/pnas.111092198
[17]  St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13: 2072–2086. doi: 10.1101/gad.13.16.2072
[18]  Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, et al. (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273: 613–622. doi: 10.1126/science.273.5275.613
[19]  Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, et al. (1996) PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273: 663–666. doi: 10.1126/science.273.5275.663
[20]  Reichenberger E, Aigner T, von der Mark K, Stoss H, Bertling W (1991) In situ hybridization studies on the expression of type X collagen in fetal human cartilage. Dev Biol 148: 562–572. doi: 10.1016/0012-1606(91)90274-7
[21]  Lunstrum GP, Keene DR, Weksler NB, Cho YJ, Cornwall M, et al. (1999) Chondrocyte differentiation in a rat mesenchymal cell line. J Histochem Cytochem 47: 1–6. doi: 10.1177/002215549904700101
[22]  Yoshida CA, Furuichi T, Fujita T, Fukuyama R, Kanatani N, et al. (2002) Core-binding factor beta interacts with Runx2 and is required for skeletal development. Nat Genet 32: 633–638. doi: 10.1038/ng1015
[23]  Yoshida CA, Yamamoto H, Fujita T, Furuichi T, Ito K, et al. (2004) Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev 18: 952–963. doi: 10.1101/gad.1174704
[24]  Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423: 332–336. doi: 10.1038/nature01657
[25]  Calder A, Roth-Albin I, Bhatia S, Pilquil C, Lee JH, et al. (2013) Lengthened g1 phase indicates differentiation status in human embryonic stem cells. Stem Cells Dev 22: 279–295. doi: 10.1089/scd.2012.0168
[26]  Andreani A LA, Rambaldi M, Leoni A, Bossa R, Fraccari A, Galatulas I (1996) Potential antitumor agents. 25 [1]. Synthesis and cytotoxic activity of 3-(2-chloro-3-indolylmethylene)1,3-dihyd?roindol-2-ones.Anticancer Res. 3585–3588.
[27]  Calderwood DA, Huttenlocher A, Kiosses WB, Rose DM, Woodside DG, et al. (2001) Increased filamin binding to beta-integrin cytoplasmic domains inhibits cell migration. Nat Cell Biol 3: 1060–1068. doi: 10.1038/ncb1201-1060
[28]  Loo DT, Kanner SB, Aruffo A (1998) Filamin binds to the cytoplasmic domain of the beta1-integrin. Identification of amino acids responsible for this interaction. J Biol Chem 273: 23304–23312. doi: 10.1074/jbc.273.36.23304
[29]  Kita K, Kimura T, Nakamura N, Yoshikawa H, Nakano T (2008) PI3K/Akt signaling as a key regulatory pathway for chondrocyte terminal differentiation. Genes Cells 13: 839–850. doi: 10.1111/j.1365-2443.2008.01209.x
[30]  Sebastian A, Matsushita T, Kawanami A, Mackem S, Landreth GE, et al. (2011) Genetic inactivation of ERK1 and ERK2 in chondrocytes promotes bone growth and enlarges the spinal canal. J Orthop Res 29: 375–379. doi: 10.1002/jor.21262
[31]  Loeser RF (2000) Chondrocyte integrin expression and function. Biorheology 37: 109–116.
[32]  Aszodi A, Hunziker EB, Brakebusch C, Fassler R (2003) Beta1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis. Genes Dev 17: 2465–2479. doi: 10.1101/gad.277003
[33]  Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, et al. (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106: 348–360. doi: 10.1007/s004120050256
[34]  Nowakowski RS, Lewin SB, Miller MW (1989) Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol 18: 311–318. doi: 10.1007/bf01190834
[35]  Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182: 311–322. doi: 10.1002/(sici)1097-4652(200003)182:3<311::aid-jcp1>3.0.co;2-9
[36]  Irniger S (2002) Cyclin destruction in mitosis: a crucial task of Cdc20. FEBS Lett 532: 7–11. doi: 10.1016/s0014-5793(02)03657-8
[37]  Pines J (1991) Cyclins: wheels within wheels. Cell Growth Differ 2: 305–310.
[38]  Sartor H, Ehlert F, Grzeschik KH, Muller R, Adolph S (1992) Assignment of two human cell cycle genes, CDC25C and CCNB1, to 5q31 and 5q12, respectively. Genomics 13: 911–912. doi: 10.1016/0888-7543(92)90190-4
[39]  Sudakin V, Ganoth D, Dahan A, Heller H, Hershko J, et al. (1995) The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol Biol Cell 6: 185–197. doi: 10.1091/mbc.6.2.185
[40]  MacPherson M, Fagerholm SC (2010) Filamin and filamin-binding proteins in integrin-regulation and adhesion. Focus on: “FilaminA is required for vimentin-mediated cell adhesion and spreading”. American journal of physiology Cell physiology 298: C206–208. doi: 10.1152/ajpcell.00505.2009
[41]  Yang X, Chen L, Xu X, Li C, Huang C, et al. (2001) TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J Cell Biol 153: 35–46. doi: 10.1083/jcb.153.1.35
[42]  Razinia Z, Baldassarre M, Bouaouina M, Lamsoul I, Lutz PG, et al. (2011) The E3 ubiquitin ligase specificity subunit ASB2alpha targets filamins for proteasomal degradation by interacting with the filamin actin-binding domain. J Cell Sci 124: 2631–2641. doi: 10.1242/jcs.084343
[43]  Lefebvre V, Garofalo S, Zhou G, Metsaranta M, Vuorio E, et al. (1994) Characterization of primary cultures of chondrocytes from type II collagen/beta-galactosidase transgenic mice. Matrix Biol 14: 329–335. doi: 10.1016/0945-053x(94)90199-6

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133