全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Single Cell Genomics of Uncultured, Health-Associated Tannerella BU063 (Oral Taxon 286) and Comparison to the Closely Related Pathogen Tannerella forsythia

DOI: 10.1371/journal.pone.0089398

Full-Text   Cite this paper   Add to My Lib

Abstract:

The uncultivated bacterium Tannerella BU063 (oral taxon 286) is the closest relative to the periodontal pathogen Tannerella forsythia, but is not disease-associated itself. Using a single cell genomics approach, we isolated 12 individual BU063 cells by flow cytometry, and we amplified and sequenced their genomes. Comparative analyses of the assembled genomic scaffolds and their gene contents allowed us to study the diversity of this taxon within the oral community of a single human donor that provided the sample. Eight different BU063 genotypes were represented, all about 5% divergent at the nucleotide level. There were 2 pairs of cells and one group of three that were more highly identical, and may represent clonal populations. We did pooled assemblies on the nearly identical genomes to increase the assembled genomic coverage. The presence of a set of 66 “core” housekeeping genes showed that two of the single cell assemblies and the assembly derived from the three putatively identical cells were essentially complete. As expected, the genome of BU063 is more similar to Tannerella forsythia than any other known genome, although there are significant differences, including a 44% difference in gene content, changes in metabolic pathways, loss of synteny, and an 8–9% difference in GC content. Several identified virulence genes of T. forsythia are not found in BU063 including karilysin, prtH, and bspA. The absence of these genes may explain the lack of periodontal pathogenesis by this species and provides a new foundation to further understand the genome evolution and mechanisms of bacterial-host interaction in closely related oral microbes with different pathogenicity potential.

References

[1]  Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, et al.. (2010) The Human Oral Microbiome. J Bacteriol.
[2]  Griffen AL, Beall CJ, Firestone ND, Gross EL, DiFranco JM, et al. (2011) CORE: A Phylogenetically-Curated 16S rDNA Database of the Core Oral Microbiome. PLoS ONE 6: e19051. doi: 10.1371/journal.pone.0019051
[3]  Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, et al. (2012) Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. The ISME journal 6: 1176–1185. doi: 10.1038/ismej.2011.191
[4]  Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr (1998) Microbial complexes in subgingival plaque. J Clin Periodontol 25: 134–144. doi: 10.1111/j.1600-051x.1998.tb02419.x
[5]  Sharma A, Inagaki S, Honma K, Sfintescu C, Baker PJ, et al. (2005) Tannerella forsythia-induced alveolar bone loss in mice involves leucine-rich-repeat BspA protein. Journal of dental research 84: 462–467. doi: 10.1177/154405910508400512
[6]  Kesavalu L, Sathishkumar S, Bakthavatchalu V, Matthews C, Dawson D, et al. (2007) Rat model of polymicrobial infection, immunity, and alveolar bone resorption in periodontal disease. Infection and immunity 75: 1704–1712. doi: 10.1128/iai.00733-06
[7]  Sharma A (2010) Virulence mechanisms of Tannerella forsythia. Periodontology 2000 54: 106–116. doi: 10.1111/j.1600-0757.2009.00332.x
[8]  Leys EJ, Lyons SR, Moeschberger ML, Rumpf RW, Griffen AL (2002) Association of Bacteroides forsythus and a novel Bacteroides phylotype with periodontitis. J Clin Microbiol 40: 821–825. doi: 10.1128/jcm.40.3.821-825.2002
[9]  de Lillo A, Booth V, Kyriacou L, Weightman AJ, Wade WG (2004) Culture-independent identification of periodontitis-associated Porphyromonas and Tannerella populations by targeted molecular analysis. J Clin Microbiol 42: 5523–5527. doi: 10.1128/jcm.42.12.5523-5527.2004
[10]  Zuger J, Luthi-Schaller H, Gmur R (2007) Uncultivated Tannerella BU045 and BU063 are slim segmented filamentous rods of high prevalence but low abundance in inflammatory disease-associated dental plaques. Microbiology 153: 3809–3816. doi: 10.1099/mic.0.2007/010926-0
[11]  Hentschel U, Hacker J (2001) Pathogenicity islands: the tip of the iceberg. Microbes and infection/Institut Pasteur 3: 545–548. doi: 10.1016/s1286-4579(01)01410-1
[12]  Bliven KA, Maurelli AT (2012) Antivirulence genes: insights into pathogen evolution through gene loss. Infection and immunity 80: 4061–4070. doi: 10.1128/iai.00740-12
[13]  Campbell AG, Campbell JH, Schwientek P, Woyke T, Sczyrba A, et al. (2013) Multiple Single-Cell Genomes Provide Insight into Functions of Uncultured Deltaproteobacteria in the Human Oral Cavity. PLoS ONE 8: e59361. doi: 10.1371/journal.pone.0059361
[14]  Campbell JH, O′Donoghue P, Campbell AG, Schwientek P, Sczyrba A, et al. (2013) UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proceedings of the National Academy of Sciences of the United States of America 110: 5540–5545. doi: 10.1073/pnas.1303090110
[15]  Marcy Y, Ouverney C, Bik EM, Losekann T, Ivanova N, et al. (2007) Dissecting biological "dark matter" with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proceedings of the National Academy of Sciences of the United States of America 104: 11889–11894.
[16]  Fodor AA, DeSantis TZ, Wylie KM, Badger JH, Ye Y, et al. (2012) The "most wanted" taxa from the human microbiome for whole genome sequencing. PLoS ONE 7: e41294.
[17]  Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, et al. (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of computational biology : a journal of computational molecular cell biology 19: 455–477. doi: 10.1089/cmb.2012.0021
[18]  Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410. doi: 10.1016/s0022-2836(05)80360-2
[19]  Lasken RS (2012) Genomic sequencing of uncultured microorganisms from single cells. Nature reviews Microbiology 10: 631–640. doi: 10.1038/nrmicro2857
[20]  Markowitz VM, Mavromatis K, Ivanova NN, Chen IM, Chu K, et al. (2009) IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25: 2271–2278. doi: 10.1093/bioinformatics/btp393
[21]  Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic acids research 28: 33–36. doi: 10.1093/nar/28.1.33
[22]  Sakamoto M, Tanner ACR, Benno Y (2010) Genus VII. Tannerella. In: Krieg NR, Ludwig W, Whitman WB, Hedlund BP, Paster BJ et al.., editors. Bergey's Manual of Systematic Bacteriology Volume 4: The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. New York: Springer. pp. 78–84.
[23]  Muench SP, Trinick J, Harrison MA (2011) Structural divergence of the rotary ATPases. Quarterly Reviews of Biophysics 44: 311–356. doi: 10.1017/s0033583510000338
[24]  Saito T, Ishihara K, Kato T, Okuda K (1997) Cloning, expression, and sequencing of a protease gene from Bacteroides forsythus ATCC 43037 in Escherichia coli. Infection and immunity 65: 4888–4891.
[25]  Nakajima T, Tomi N, Fukuyo Y, Ishikura H, Ohno Y, et al. (2006) Isolation and identification of a cytopathic activity in Tannerella forsythia. Biochemical and biophysical research communications 351: 133–139. doi: 10.1016/j.bbrc.2006.10.012
[26]  Tomi N, Fukuyo Y, Arakawa S, Nakajima T (2008) Pro-inflammatory cytokine production from normal human fibroblasts is induced by Tannerella forsythia detaching factor. Journal of periodontal research 43: 136–142. doi: 10.1111/j.1600-0765.2007.01003.x
[27]  Pei J, Grishin NV (2009) Prediction of a caspase-like fold in Tannerella forsythia virulence factor PrtH. Cell cycle 8: 1453–1455. doi: 10.4161/cc.8.9.8243
[28]  Jusko M, Potempa J, Karim AY, Ksiazek M, Riesbeck K, et al. (2012) A metalloproteinase karilysin present in the majority of Tannerella forsythia isolates inhibits all pathways of the complement system. Journal of immunology 188: 2338–2349. doi: 10.4049/jimmunol.1101240
[29]  Karim AY, Kulczycka M, Kantyka T, Dubin G, Jabaiah A, et al. (2010) A novel matrix metalloprotease-like enzyme (karilysin) of the periodontal pathogen Tannerella forsythia ATCC 43037. Biological chemistry 391: 105–117. doi: 10.1515/bc.2010.009
[30]  Sharma A, Sojar HT, Glurich I, Honma K, Kuramitsu HK, et al. (1998) Cloning, expression, and sequencing of a cell surface antigen containing a leucine-rich repeat motif from Bacteroides forsythus ATCC 43037. Infection and immunity 66: 5703–5710.
[31]  Mello LV, Chen X, Rigden DJ (2010) Mining metagenomic data for novel domains: BACON, a new carbohydrate-binding module. FEBS letters 584: 2421–2426. doi: 10.1016/j.febslet.2010.04.045
[32]  Inagaki S, Onishi S, Kuramitsu HK, Sharma A (2006) Porphyromonas gingivalis vesicles enhance attachment, and the leucine-rich repeat BspA protein is required for invasion of epithelial cells by "Tannerella forsythia". Infection and immunity 74: 5023–5028.
[33]  Onishi S, Honma K, Liang S, Stathopoulou P, Kinane D, et al. (2008) Toll-like receptor 2-mediated interleukin-8 expression in gingival epithelial cells by the Tannerella forsythia leucine-rich repeat protein BspA. Infection and immunity 76: 198–205. doi: 10.1128/iai.01139-07
[34]  Roy S, Douglas CW, Stafford GP (2010) A novel sialic acid utilization and uptake system in the periodontal pathogen Tannerella forsythia. Journal of bacteriology 192: 2285–2293. doi: 10.1128/jb.00079-10
[35]  Roy S, Honma K, Douglas CW, Sharma A, Stafford GP (2011) Role of sialidase in glycoprotein utilization by Tannerella forsythia. Microbiology 157: 3195–3202. doi: 10.1099/mic.0.052498-0
[36]  Honma K, Mishima E, Sharma A (2011) Role of Tannerella forsythia NanH sialidase in epithelial cell attachment. Infection and immunity 79: 393–401. doi: 10.1128/iai.00629-10
[37]  Lee SW, Sabet M, Um HS, Yang J, Kim HC, et al. (2006) Identification and characterization of the genes encoding a unique surface (S-) layer of Tannerella forsythia. Gene 371: 102–111. doi: 10.1016/j.gene.2005.11.027
[38]  Fletcher CM, Coyne MJ, Bentley DL, Villa OF, Comstock LE (2007) Phase-variable expression of a family of glycoproteins imparts a dynamic surface to a symbiont in its human intestinal ecosystem. Proceedings of the National Academy of Sciences of the United States of America 104: 2413–2418. doi: 10.1073/pnas.0608797104
[39]  Posch G, Pabst M, Brecker L, Altmann F, Messner P, et al. (2011) Characterization and scope of S-layer protein O-glycosylation in Tannerella forsythia. The Journal of biological chemistry 286: 38714–38724. doi: 10.1074/jbc.m111.284893
[40]  Sakakibara J, Nagano K, Murakami Y, Higuchi N, Nakamura H, et al. (2007) Loss of adherence ability to human gingival epithelial cells in S-layer protein-deficient mutants of Tannerella forsythensis. Microbiology 153: 866–876. doi: 10.1099/mic.0.29275-0
[41]  Shimotahira N, Oogai Y, Kawada-Matsuo M, Yamada S, Fukutsuji K, et al. (2013) The S-layer of Tannerella forsythia contributes to serum resistance and oral bacterial co-aggregation. Infection and immunity 81: 1198–1206. doi: 10.1128/iai.00983-12
[42]  Honma K, Inagaki S, Okuda K, Kuramitsu HK, Sharma A (2007) Role of a Tannerella forsythia exopolysaccharide synthesis operon in biofilm development. Microbial pathogenesis 42: 156–166. doi: 10.1016/j.micpath.2007.01.003
[43]  Settem RP, Honma K, Nakajima T, Phansopa C, Roy S, et al. (2013) A bacterial glycan core linked to surface (S)-layer proteins modulates host immunity through Th17 suppression. Mucosal Immunol 6: 415–426. doi: 10.1038/mi.2012.85
[44]  Maiden MF, Pham C, Kashket S (2004) Glucose toxicity effect and accumulation of methylglyoxal by the periodontal anaerobe Bacteroides forsythus. Anaerobe 10: 27–32.
[45]  Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, et al. (2013) The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. The ISME journal 7: 1016–1025. doi: 10.1038/ismej.2012.174
[46]  Consortium THMP (2012) A framework for human microbiome research. Nature 486: 215–221.
[47]  Downes J, Dewhirst FE, Tanner AC, Wade WG (2013) Description of Alloprevotella rava gen. nov., sp. nov., isolated from the human oral cavity, and reclassification of Prevotella tannerae Moore et al. 1994 as Alloprevotella tannerae gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology 63: 1214–1218. doi: 10.1099/ijs.0.041376-0
[48]  Gerdes K, Maisonneuve E (2012) Bacterial persistence and toxin-antitoxin loci. Annual review of microbiology 66: 103–123. doi: 10.1146/annurev-micro-092611-150159
[49]  Hildebrand F, Meyer A, Eyre-Walker A (2010) Evidence of selection upon genomic GC-content in bacteria. PLoS genetics 6: e1001107. doi: 10.1371/journal.pgen.1001107
[50]  Duran-Pinedo AE, Paster B, Teles R, Frias-Lopez J (2011) Correlation network analysis applied to complex biofilm communities. PLoS ONE 6: e28438. doi: 10.1371/journal.pone.0028438
[51]  Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, et al. (2012) RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic acids research 40: W622–627. doi: 10.1093/nar/gks540
[52]  Luo R, Liu B, Xie Y, Li Z, Huang W, et al. (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1: 18. doi: 10.1186/2047-217x-1-18
[53]  Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome research 18: 821–829. doi: 10.1101/gr.074492.107
[54]  Chitsaz H, Yee-Greenbaum JL, Tesler G, Lombardo MJ, Dupont CL, et al. (2011) Efficient de novo assembly of single-cell bacterial genomes from short-read data sets. Nature biotechnology 29: 915–921. doi: 10.1038/nbt.1966
[55]  Brown CT, Howe A, Zhang Q, Pyrkosz AB, Brom TH (2012) A Reference-Free Algorithm for Computational Normalization of Shotgun Sequencing Data. arXivorg.
[56]  Kent WJ (2002) BLAT-the BLAST-like alignment tool. Genome Res 12: 656–664. doi: 10.1101/gr.229202.
[57]  Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, et al. (2000) Artemis: sequence visualization and annotation. Bioinformatics 16: 944–945. doi: 10.1093/bioinformatics/16.10.944

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133